An introduction to the uncertainty principle: Hardy's theorem on Lie groups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2004
|
Schriftenreihe: | Progress in mathematics
217 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 174 S. |
ISBN: | 0817643303 3764343303 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV017109838 | ||
003 | DE-604 | ||
005 | 20040204 | ||
007 | t | ||
008 | 030429s2004 xxu |||| 00||| eng d | ||
010 | |a 2003050228 | ||
020 | |a 0817643303 |9 0-8176-4330-3 | ||
020 | |a 3764343303 |9 3-7643-4330-3 | ||
035 | |a (OCoLC)249249264 | ||
035 | |a (DE-599)BVBBV017109838 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-824 |a DE-11 | ||
050 | 0 | |a QA403 | |
082 | 0 | |a 512/.55 |2 21 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Thangavelu, Sundaram |d 1957- |e Verfasser |0 (DE-588)120232383 |4 aut | |
245 | 1 | 0 | |a An introduction to the uncertainty principle |b Hardy's theorem on Lie groups |c Sundaram Thangavelu |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2004 | |
300 | |a XII, 174 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 217 | |
650 | 7 | |a Grupos de lie |2 larpcal | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Homogeneous spaces | |
650 | 4 | |a Lie groups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogener Raum |0 (DE-588)4025787-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Homogener Raum |0 (DE-588)4025787-3 |D s |
689 | 0 | 2 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in mathematics |v 217 |w (DE-604)BV000004120 |9 217 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010317136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010317136 |
Datensatz im Suchindex
_version_ | 1809768504341037056 |
---|---|
adam_text |
Contents
Foreword ix
Preface xi
1 Euclidean Spaces 1
1.1 Fourier transform on Ll(W) 1
1.2 Hermite functions and L2 theory 7
1.3 Spherical harmonics and symmetry properties 11
1.4 Hardy's theorem on R" 18
1.5 Beurling's theorem and its consequences 29
1.6 Further results and open problems 38
2 Heisenberg Groups 45
2.1 Heisenberg group and its representations 45
2.2 Fourier transform on H" 48
2.3 Special Hermite functions 52
2.4 Fourier transform of radial functions 60
2.5 Unitary group and spherical harmonics 62
2.6 Spherical harmonics and the Weyl transform 69
2.7 Weyl correspondence of polynomials 77
2.8 Heat kernel for the sublaplacian 83
2.9 Hardy's theorem for the Heisenberg group 87
2.10 Further results and open problems 100
3 Symmetric Spaces of Rank 1 105
3.1 A Riemannian space associated to H" 105
3.2 The algebra of radial functions on S Ill
3.3 Spherical Fourier transform 119
3.4 Helgason Fourier transform 126
3.5 Hecke Bochner formula for the Helgason Fourier transform 136
3.6 Jacobi transforms 141
viii Contents
3.7 Estimating the heat kernel 146
3.8 Hardy's theorem for the Helgason Fourier transform 152
3.9 Further results and open problems 157
Bibliography 169
Index 173 |
any_adam_object | 1 |
author | Thangavelu, Sundaram 1957- |
author_GND | (DE-588)120232383 |
author_facet | Thangavelu, Sundaram 1957- |
author_role | aut |
author_sort | Thangavelu, Sundaram 1957- |
author_variant | s t st |
building | Verbundindex |
bvnumber | BV017109838 |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403 |
callnumber-search | QA403 |
callnumber-sort | QA 3403 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 SK 450 |
ctrlnum | (OCoLC)249249264 (DE-599)BVBBV017109838 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV017109838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040204</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030429s2004 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003050228</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817643303</subfield><subfield code="9">0-8176-4330-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764343303</subfield><subfield code="9">3-7643-4330-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249249264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017109838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA403</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thangavelu, Sundaram</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120232383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to the uncertainty principle</subfield><subfield code="b">Hardy's theorem on Lie groups</subfield><subfield code="c">Sundaram Thangavelu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 174 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">217</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos de lie</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogener Raum</subfield><subfield code="0">(DE-588)4025787-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homogener Raum</subfield><subfield code="0">(DE-588)4025787-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">217</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">217</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010317136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010317136</subfield></datafield></record></collection> |
id | DE-604.BV017109838 |
illustrated | Not Illustrated |
indexdate | 2024-09-10T00:55:40Z |
institution | BVB |
isbn | 0817643303 3764343303 |
language | English |
lccn | 2003050228 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010317136 |
oclc_num | 249249264 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-11 |
physical | XII, 174 S. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Thangavelu, Sundaram 1957- Verfasser (DE-588)120232383 aut An introduction to the uncertainty principle Hardy's theorem on Lie groups Sundaram Thangavelu Boston [u.a.] Birkhäuser 2004 XII, 174 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 217 Grupos de lie larpcal Harmonic analysis Homogeneous spaces Lie groups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Homogener Raum (DE-588)4025787-3 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s Homogener Raum (DE-588)4025787-3 s Lie-Gruppe (DE-588)4035695-4 s DE-604 Progress in mathematics 217 (DE-604)BV000004120 217 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010317136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Thangavelu, Sundaram 1957- An introduction to the uncertainty principle Hardy's theorem on Lie groups Progress in mathematics Grupos de lie larpcal Harmonic analysis Homogeneous spaces Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Harmonische Analyse (DE-588)4023453-8 gnd Homogener Raum (DE-588)4025787-3 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4023453-8 (DE-588)4025787-3 |
title | An introduction to the uncertainty principle Hardy's theorem on Lie groups |
title_auth | An introduction to the uncertainty principle Hardy's theorem on Lie groups |
title_exact_search | An introduction to the uncertainty principle Hardy's theorem on Lie groups |
title_full | An introduction to the uncertainty principle Hardy's theorem on Lie groups Sundaram Thangavelu |
title_fullStr | An introduction to the uncertainty principle Hardy's theorem on Lie groups Sundaram Thangavelu |
title_full_unstemmed | An introduction to the uncertainty principle Hardy's theorem on Lie groups Sundaram Thangavelu |
title_short | An introduction to the uncertainty principle |
title_sort | an introduction to the uncertainty principle hardy s theorem on lie groups |
title_sub | Hardy's theorem on Lie groups |
topic | Grupos de lie larpcal Harmonic analysis Homogeneous spaces Lie groups Lie-Gruppe (DE-588)4035695-4 gnd Harmonische Analyse (DE-588)4023453-8 gnd Homogener Raum (DE-588)4025787-3 gnd |
topic_facet | Grupos de lie Harmonic analysis Homogeneous spaces Lie groups Lie-Gruppe Harmonische Analyse Homogener Raum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010317136&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT thangavelusundaram anintroductiontotheuncertaintyprinciplehardystheoremonliegroups |