Geometric tools for computer graphics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Morgan Kaufmann
2003
|
Schriftenreihe: | The Morgan Kaufmann series in computer graphics and geometric modeling
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XLV, 1009 S. graph. Darst. |
ISBN: | 9781558605947 1558605940 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV016967740 | ||
003 | DE-604 | ||
005 | 20170214 | ||
007 | t | ||
008 | 030311s2003 ne d||| |||| 00||| eng d | ||
010 | |a 2002107242 | ||
020 | |a 9781558605947 |9 978-1-55860-594-7 | ||
020 | |a 1558605940 |9 1-55860-594-0 | ||
035 | |a (OCoLC)248505657 | ||
035 | |a (DE-599)BVBBV016967740 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c NL | ||
049 | |a DE-858 |a DE-91G |a DE-522 |a DE-523 |a DE-83 |a DE-739 |a DE-703 |a DE-706 |a DE-473 | ||
050 | 0 | |a T385 | |
082 | 0 | |a 006.6/01/516 |2 21 | |
084 | |a ST 320 |0 (DE-625)143657: |2 rvk | ||
084 | |a DAT 756f |2 stub | ||
100 | 1 | |a Schneider, Philip J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric tools for computer graphics |c Philip J. Schneider ; David H. Eberly |
264 | 1 | |a Amsterdam [u.a.] |b Morgan Kaufmann |c 2003 | |
300 | |a XLV, 1009 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Morgan Kaufmann series in computer graphics and geometric modeling | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Geometry |x Data processing | |
650 | 4 | |a Three-dimensional display systems | |
650 | 0 | 7 | |a Computergrafik |0 (DE-588)4010450-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computergrafik |0 (DE-588)4010450-3 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Eberly, David H. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010247821&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010247821 |
Datensatz im Suchindex
_version_ | 1804129888430456832 |
---|---|
adam_text | Contents
Chapter
1
Foreword
Figures
Tables
preface
INTRODUCTION
CHAPTER
1.1
How to Use This Book
1.2
Issues of Numerical Computation
1.2.1
Low-Level Issues
1.2.2
High-Level Issues
1.3
A Summary of the Chapters
MATRICES AND LINEAR SYSTEMS
2.1
2.2
2.3
2.4
Introduction
2.1.1
Motivation
2.1.2
Organization
2.1.3
Notational Conventions
Tuples
2.2.1
Definition
2.2.2
Arithmetic Operations
Matrices
2.3.1
Notation and Terminology
2.3.2
Transposition
2.3.3
Arithmetic Operations
2.3.4
Matrix Multiplication
Linear
Systems
2.4.1
Linear Equations
2.4.2
Linear Systems in Two Unknowns
VII
xxiii
xli
xliii
9
9
13
14
14
15
16
16
17
17
18
20
24
24
26
2.4.3
General
Linear
Systems
29
2.4.4
Row Reductions, Echelon Form, and Rank
30
2.5
Square Matrices
32
2.5.1
Diagonal Matrices
32
2.5.2
Triangular Matrices
34
2.5.3
The Determinant
34
2.5.4
Inverse
38
2.6
Linear Spaces
41
2.6.1
Fields
41
2.6.2
Definition and Properties
42
2.6.3
Subspaces
43
2.6.4
Linear Combinations and Span
43
2.6.5
Linear Independence, Dimension, and Basis
44
2.7
Linear Mappings
45
2.7.1
Mappings in General
45
2.7.2
Linear Mappings
47
2.7.3
Matrix Representation of Linear Mappings
49
2.7.4
Cramer s Rule
50
2.8
Eigenvalues and Eigenvectors
52
2.9
Euclidean Space
54
2.9.1
Inner Product Spaces
54
2.9.2
Orthogonality and
Orthonormal
Sets
55
2.10
Least Squares
56
Recommended Reading
60
Chapter
3
VECTOR ALGEBRA
63
3.1
Vector
Basics
63
3.1.1
Vector Equivalence
63
3.1.2
Vector Addition
64
3.1.3
Vector Subtraction
65
3.1.4
Vector Scaling
65
3.1.5
Properties of Vector Addition and Scalar Multiplication
66
3.2
Vector
Space
69
3.2.1
Span
70
3.2.2
Linear Independence
71
3.2.3
Basis, Subspaces, and Dimension
71
3.2.4
Orientation
73
3.2.5
Change of Basis
75
3.2.6
Linear Transformations
76
CHAPTER
3.3 Affine
Spaces
80
3.3.1
Euclidean Geometry
84
3.3.2
Volume, the Determinant, and the Scalar Triple Product
94
3.3.3
Frames
96
3.4 Affine
Transformations
98
3.4.1
Types of
Affine
Maps
103
3.4.2
Composition of
Affine
Maps
103
3.5
Barycentric Coordinates and
Simplexes 104
3.5.1
Barycentric Coordinates and Subspaces
106
3.5.2 Affine
Independence
106
Matrices, Vector Algebra,
and Transformations
109
4.1
Introduction
109
4.2
Matrix Representation of Points and Vectors
110
4.3
Addition, Subtraction, and Multiplication
113
4.3.1
Vector Addition and Subtraction
113
4.3.2
Point and Vector Addition and Subtraction
114
4.3.3
Subtraction of Points
115
4.3.4
Scalar Multiplication
115
4.4
Products of Vectors
115
4.4.1
Dot Product
116
4.4.2
Cross Product
117
4.4.3
Tensor Product
120
4.4.4
The Perp Operator and the Perp Dot Product
121
4.5
Matrix Representation of
Affine
Transformations
126
4.6
Change-of-Basis/Frame/Coordinate System
128
4.7
Vector Geometry of
Affine
Transformations
132
4.7.1
Notation
133
4.7.2
Translation
134
4.7.3
Rotation
136
4.7.4
Scaling
142
4.7.5
Reflection
148
4.7.6
Shearing
153
4.8
Projections
158
4.8.1
Orthographic
159
4.8.2
Oblique
160
4.8.3
Perspective
163
CHAPTER
5
CHAPTER
4.9
Transforming Normal Vectors
Recommended Reading
GEOMETRIC PRIMITIVES IN 2D
5.1
Linear Components
5.1.1
Implicit Form
5.1.2
Parametric Form
5.1.3
Converting between Representations
5.2
Triangles
5.3
Rectangles
5.4
Polylines and Polygons
5.5
Quadratic Curves
5.5.1
Circles
5.5.2
Ellipses
5.6
Polynomial Curves
5.6.1
Bézier
Curves
5.6.2
B-Spline Curves
5.6.3
NURBS Curves
Distance in 2D
6.1
Point to Linear Component
6.1.1
Point to Line
6.1.2
Point to Ray
6.1.3
Point to Segment
6.2
Point to Polyline
6.3
Point to Polygon
6.3.1
Point to Triangle
6.3.2
Point to Rectangle
6.3.3
Point to Orthogonal Frustum
6.3.4
Point to Convex Polygon
6.4
Point to Quadratic Curve
6.5
Point to Polynomial Curve
6.6
Linear Components
6.6.1
Line to Line
6.6.2
Line to Ray
6.6.3
Line to Segment
165
168
171
171
172
173
174
175
177
177
181
183
183
185
186
186
188
189
190
190
191
192
194
196
196
211
213
216
217
219
221
221
222
223
6.6.4
Ray to
Ray 224
6.6.5 Ray
to
Segment 226
6.6.6 Segment
to
Segment 228
6.7 Linear
Component to Polyline or Polygon
229
6.8
Linear Component to Quadratic Curve
231
6.9
Linear Component to Polynomial Curve
233
6.10
GJK Algorithm
233
6.10.1
Set Operations
234
6.10.2
Overview of the Algorithm
235
6.10.3
Alternatives to GJK
238
CHAPTER
/
Intersection in 2D
241
7.1
Linear Components
241
7.2
Linear Components and Polylines
246
7.3
Linear Components and Quadratic Curves
246
7.3.1
Linear Components and General Quadratic Curves
247
7.3.2
Linear Components and Circular Components
247
7.4
Linear Components and Polynomial Curves
248
7.4.1
Algebraic Method
248
7.4.2
Polyline Approximation
250
7.4.3
Hierarchical Bounding
251
7.4.4
Monotone Decomposition
252
7.4.5
Rasterization
253
7.5
Quadratic Curves
255
7.5.1
General Quadratic Curves
255
7.5.2
Circular Components
257
7.5.3
Ellipses
258
7.6
Polynomial Curves
262
7.6.1
Algebraic Method
262
7.6.2
Polyline Approximation
262
7.6.3
Hierarchical Bounding
263
7.6.4
Rasterization
263
7.7
The Method of Separating Axes
265
7.7.1
Separation by Projection onto a Line
265
7.7.2
Separation of Stationary Convex Polygons
266
7.7.3
Separation of Moving Convex Polygons
273
7.7.4
Intersection Set for Stationary Convex Polygons
276
7.7.5
Contact Set for Moving Convex Polygons
277
Chapter
О
Miscellaneous
го
Problems
285
8.1
Circle through Three Points
285
8.2
Circle Tangent to Three Lines
285
8.3
Line Tangent to a Circle at a Given Point
287
8.4
Line Tangent to a Circle through a Given Point
288
8.5
Lines Tangent to Two Circles
291
8.6
Circle through Two Points with a Given Radius
297
8.7
Circle through a Point and Tangent to a Line with a
Given Radius
298
8.8
Circles Tangent to Two Lines with a Given Radius
302
8.9
Circles through a Point and Tangent to a Circle with a
Given Radius
305
8.10
Circles Tangent to a Line and a Circle with a Given Radius
309
8.11
Circles Tangent to Two Circles with a Given Radius
314
8.12
Line Perpendicular to a Given Line through a Given Point
316
8.13
Line between and Equidistant to Two Points
317
8.14
Line Parallel to a Given Line at a Given Distance
318
8.15
Line Parallel to a Given Line at a Given Vertical (Horizontal)
Distance
320
8.16
Lines Tangent to a Given Circle and Normal to a Given Line
322
Chapter
У
Geometric Primitives in
3D 325
9.1
Linear Components
325
9.2
Planar Components
326
9.2.1
Planes
326
9.2.2
Coordinate System Relative to a Plane
330
9.2.3
2D Objects in a Plane
331
9.3
Polymeshes, Polyhedra, and Polytopes
333
9.3.1
Vertex-Edge-Face Tables
337
9.3.2
Connected Meshes
340
9.3.3
Manifold Meshes
342
9.3.4
Closed Meshes
342
9.3.5
Consistent Ordering
343
9.3.6
Platonic Solids
346
9.4
Quadric Surfaces
351
9.4.1
Three Nonzero Eigenvalues
351
9.4.2
Two Nonzero Eigenvalues
352
9.4.3
One Nonzero Eigenvalue
352
9.5
Torus
355
9.6
Polynomial Curves
356
9.6.1
Bézier
Curves
357
9.6.2
B-Spline Curves
357
9.6.3
NURBS Curves
358
9.7
Polynomial Surfaces
359
9.7.1
Bézier
Surfaces
360
9.7.2
B-Spline Surfaces
362
9.7.3
NURBS Surfaces
364
CHAPTER
1U Distance in
3D 365
10.1
Introduction
365
10.2
Point to Linear Component
365
10.2.1
Point to Ray or Line Segment
367
10.2.2
Point to Polyline
369
10.3
Point to Planar Component
374
10.3.1
Point to Plane
374
10.3.2
Point to Triangle
376
10.3.3
Point to Rectangle
382
10.3.4
Point to Polygon
385
10.3.5
Point to Circle or Disk
388
10.4
Point to Polyhedron
391
10.4.1
General Problem
391
10.4.2
Point to Oriented Bounding Box
394
10.4.3
Point to Orthogonal Frustum
397
10.5
Point to Quadric Surface
401
10.5.1
Point to General Quadric Surface
401
10.5.2
Point to Ellipsoid
403
10.6
Point to Polynomial Curve
405
10.7
Point to Polynomial Surface
407
10.8
Linear Components
409
10.8.1
Lines and Lines
409
10.8.2
Segment/Segment, Line/Ray, Line/Segment, Ray/Ray,
Ray/Segment
412
10.8.3
Segment to Segment, Alternative Approach
426
10.9 Linear
Component
to Triangle, Rectangle, Tetrahedron,
Oriented Box
433
10.9.1
Linear Component to Triangle
433
10.9.2
Linear Component to Rectangle
441
10.9.3
Linear Component to Tetrahedron
447
10.9.4
Linear Component to Oriented Bounding Box
450
10.10
Line to Quadric Surface
465
10.11
Line to Polynomial Surface
467
10.12
GJK Algorithm
468
10.13
Miscellaneous
469
10.13.1
Distance between Line and Planar Curve
469
10.13.2
Distance between Line and Planar Solid Object
471
10.13.3
Distance between Planar Curves
472
10.13.4
Geodesic Distance on Surfaces
477
CHAPTER
1
JL Intersection in
3D 481
11.1
Linear Components and Planar Components
481
11.1.1
Linear Components and Planes
482
11.1.2
Linear Components and Triangles
485
11.1.3
Linear Components and Polygons
488
11.1.4
Linear Component and Disk
49
1
11.2
Linear Components and Polyhedra
493
11.3
Linear Components and Quadric Surfaces
498
11.3.1
General Quadric Surfaces
499
11.3.2
Linear Components and a Sphere
501
11.3.3
Linear Components and an Ellipsoid
504
11.3.4
Linear Components and Cylinders
507
11.3.5
Linear Components and a Cone
512
11.4
Linear Components and Polynomial Surfaces
519
11.4.1
Algebraic Surfaces
520
11.4.2
Free-Form Surfaces
521
11.5
Planar Components
529
11.5.1
Two Planes
529
11.5.2
Three Planes
532
11.5.3
Triangle and Plane
534
11.5.4
Triangle and Triangle
539
11.6
Planar Components and Polyhedra
543
11.6.1
Trimeshes
543
11.6.2
General Polyhedra
544
11.7
Planar
Components and Quadric Surfaces
547
547
548
551
563
583
587
589
590
591
592
595
595
596
604
608
608
609
610
610
611
611
615
616
616
624
624
626
630
634
635
637
639
644
646
11.12.10
Linear Component and Torus
659
Chapter
L
Zi
MISCELLANEOUS
3D
PROBLEMS
663
12.1
Projection of a Point onto a Plane
663
12.2
Projection of a Vector onto a Plane
665
11.7.1
Plane and General Quadric Surface
11.7.2
Plane and Sphere
11.7.3
Plane and Cylinder
11.7.4
Plane and Cone
11.7.5
Triangle and Cone
11.8
Planar Components and Polynomial Surfaces
11.8.1
Hermite Curves
11.8.2
Geometry Definitions
11.8.3
Computing the Curves
11.8.4
The Algorithm
11.8.5
Implementation Notes
11.9
Quadric
Surfaces
11.9.1
General Intersection
11.9.2
Ellipsoids
11.10
Polynomial Surfaces
11.10.1
Subdivision Methods
11.10.2
Lattice Evaluation
11.10.3
Analytic Methods
11.10.4
Marching Methods
11.11
The Method of Separating Axes
11.11.1
Separation of Stationary Convex Polyhedra
11.11.2
Separation of Moving Convex Polyhedra
11.11.3
Intersection Set for Stationary Convex Polyhedra
11.11.4
Contact Set for Moving Convex Polyhedra
11.12
Miscellaneous
11.12.1
Oriented Bounding Box and Orthogonal Frustum
11.12.2
Linear Component and Axis-Aligned Bounding Box
11.12.3
Linear Component and Oriented Bounding Box
11.12.4
Plane and Axis-Aligned Bounding Box
11.12.5
Plane and Oriented Bounding Box
11.12.6
Axis-Aligned Bounding Boxes
11.12.7
Oriented Bounding Boxes
11.12.8
Sphere and Axis-Aligned Bounding Box
11.12.9
Cylinders
12.3 Angle
between a Line and a Plane
666
12.4
Angle between Two Planes
667
12.5
Plane Normal to a Line and through a
Given Point
667
12.6
Plane through Three Points
669
12.7
Angle between Two Lines
670
Chapter
Computational Geometry Topics
673
13.1
Binary Space-Partitioning Trees in 2D
673
13.1.1 BSP
Tree Representation of a Polygon
674
13.1.2
Minimum Splits versus Balanced Trees
680
13.1.3
Point in Polygon Using
BSP
Trees
683
13.1.4
Partitioning a Line Segment by
a
BSP
Tree
684
13.2
Binary Space-Partitioning Trees in
3D 687
13.2.1 BSP
Tree Representation of a Polyhedron
688
13.2.2
Minimum Splits versus Balanced Trees
690
13.2.3
Point in Polyhedron Using
BSP
Trees
691
13.2.4
Partitioning a Line Segment by
a
BSP
Tree
692
13.2.5
Partitioning a Convex Polygon by
a
BSP
Tree
694
13.3
Point in Polygon
695
13.3.1
Point in Triangle
695
13.3.2
Point in Convex Polygon
697
13.3.3
Point in General Polygon
700
13.3.4
Faster Point in General Polygon
706
13.3.5
A Grid Method
707
13.4
Point in Polyhedron
708
13.4.1
Point in Tetrahedron
708
13.4.2
Point in Convex Polyhedron
709
13.4.3
Point in General Polyhedron
711
13.5
Boolean Operations on Polygons
714
13.5.1
The Abstract Operations
715
13.5.2
The Two Primitive Operations
717
13.5.3
Boolean Operations Using
BSP
Trees
719
13.5.4
Other Algorithms
724
13.6
Boolean Operations on Polyhedra
726
13.6.1
Abstract Operations
726
13.6.2
Boolean Operations Using
BSP
Trees
727
13.7
Convex Hulls
729
13.7.1
Convex Hulls in 2D
729
13.7.2
Convex
Hulls in
3D 744
13.7.3
Convex Hulls in Higher Dimensions
750
13.8
Delaunay
Triangulation 756
13.8.1
Incremental Construction in 2D
757
13.8.2
Incremental Construction in General Dimensions
761
13.8.3
Construction by Convex Hull
766
13.9
Polygon Partitioning
767
13.9.1
Visibility Graph of a Simple Polygon
767
13.9.2 Triangulation 771
13.9.3 Triangulation
by Horizontal Decomposition
775
13.9.4
Convex Partitioning
789
13.10
Circumscribed and Inscribed Balls
798
13.10.1
Circumscribed Ball
799
13.10.2
Inscribed Ball
801
13.11
Minimum Bounds for Point Sets
803
13.11.1
Minimum-Area Rectangle
803
13.11.2
Minimum-Volume Box
806
13.11.3
Minimum-Area Circle
807
13.11.4
Minimum-Volume Sphere
811
13.11.5
Miscellaneous
813
13.12
Area and Volume Measurements
816
13.12.1
Area of a 2D Polygon
816
13.12.2
Area of a
3D
Polygon
820
13.12.3
Volume of a Polyhedron
824
APPENDIX
Numerical methods
827
A.I Solving Linear Systems
827
A.
1.1
Special Case: Solving a Triangular System
828
A.
1.2
Gaussian Elimination
829
A.2 Systems of Polynomials
832
A.2.
1
Linear Equations in One Formal Variable
833
A.2.2 Any-Degree Equations in One Formal Variable
835
A.2.3 Any-Degree Equations in Any Formal Variables
837
A.3 Matrix Decompositions
847
A.3.1
Euler
Angle Factorization
847
A.3.2 QR Decomposition
852
A.3.3 Eigendecomposition
853
A.3.4 Polar Decomposition
854
A.3.
5
Singular Value Decomposition
857
A.4
Representations of
3D
Rotations
857
A.4.1 Matrix Representation
857
A.4.2 Axis-Angle Representation
858
A.4.3 Quaternion Representation
860
A.4.4 Performance Issues
861
A.5 Root Finding
869
A.5.1 Methods in One Dimension
869
A.5.2 Methods in Many Dimensions
874
A.5.3 Stable Solution to Quadratic Equations
875
A.6 Minimization
876
A.6.1 Methods in One Dimension
876
A.6.2 Methods in Many Dimensions
877
A.6.3 Minimizing a Quadratic Form
880
A.6.4 Minimizing a Restricted Quadratic Form
880
A.7 Least Squares Fitting
882
A.7.1 Linear Fitting of Points (x,f(x))
882
A.7.2 Linear Fitting of Points Using Orthogonal Regression
882
A.7.3 Planar Fitting of Points
(x,y,
ƒ
(x,y))
884
A.7.4 Hyperplanar Fitting of Points Using Orthogonal Regression
884
A.7.5 Fitting a Circle to 2D Points
886
A.7.6 Fitting a Sphere to
3D
Points
887
A.7.7 Fitting a Quadratic Curve to 2D Points
888
A.7.8 Fitting a Quadric Surface to
3D
Points
889
A.8 Subdivision of Curves
889
A.8.1 Subdivision by Uniform Sampling
889
A.8.2 Subdivision by Arc Length
890
A.8.3 Subdivision by Midpoint Distance
891
A.8.4 Subdivision by Variation
892
A.
9
Topics from Calculus
894
A.9.1 Level Sets
894
A.9.2 Minima and Maxima of Functions
898
A.9.3
Lagrange
Multipliers
910
APPENDIX
ЛЈ
Trigonometry
923
B.I Introduction
923
B.I.I Terminology
923
B.I.
2
Angles
923
B.1.3 Conversion Examples
925
B.2
Trigonometrie Funetions 926
B.2.1
Definitions in Terms of Exponentials
930
B.2.2 Domains and Ranges 931
B.2.3
Graphs of
Trigonometrie Funetions 931
B.2.4 Derivatives
of
Trigonometrie Funetions 931
B.2.5 Integration 934
B.3 Trigonometrie
Identities and Laws
934
B.3.1
Periodicity
935
B.3.2
Laws
936
B.3.3
Formulas
940
B.4
Inverse
Trigonometrie Funetions 945
B.4.1
Defining
aresin and
arceos
in
Terms of
aretan 945
B.4.2 Domains and Ranges 945
B.4.3
Graphs
946
B.4.4 Derivatives 946
B.4.5 Integration 948
B.5
Further Reading
948
APPENDIX
V-/
Basic Formulas for geometric Primitives
949
C.I Introduction
949
C.2 Triangles
949
C.2.1 Symbols
949
C.2.2 Definitions
950
C.2.3 Right Triangles
952
C.2.4 Equilateral Triangle
953
C.2.5 General Triangle
953
C.3 Quadrilaterals
954
C.3.1 Square
954
C.3.2 Rectangle
954
C.3.3 Parallelogram
954
C.3.4 Rhombus
955
C.3.5
Trapezoid
955
C.3.6 General Quadrilateral
955
C.4 Circles
956
C.4.1 Symbols
956
C.4.2 Full Circle
956
C.4.3 Sector of a Circle
956
C.4.4 Segment of a Circle
957
C.5
Polyhedra
957
0.5.1 Symbols 957
C.5.2
Box
957
C.5.3
Prism
958
C.5.4
Pyramid
958
C.6
Cylinder
958
C.7 Cone
959
C.8 Spheres
959
С.б.і
Segments
959
C.8.2 Sector
960
C.9 Torus
960
References
961
Index
973
About the Authors
1009
|
any_adam_object | 1 |
author | Schneider, Philip J. |
author_facet | Schneider, Philip J. |
author_role | aut |
author_sort | Schneider, Philip J. |
author_variant | p j s pj pjs |
building | Verbundindex |
bvnumber | BV016967740 |
callnumber-first | T - Technology |
callnumber-label | T385 |
callnumber-raw | T385 |
callnumber-search | T385 |
callnumber-sort | T 3385 |
callnumber-subject | T - General Technology |
classification_rvk | ST 320 |
classification_tum | DAT 756f |
ctrlnum | (OCoLC)248505657 (DE-599)BVBBV016967740 |
dewey-full | 006.6/01/516 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6/01/516 |
dewey-search | 006.6/01/516 |
dewey-sort | 16.6 11 3516 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01910nam a2200493zc 4500</leader><controlfield tag="001">BV016967740</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030311s2003 ne d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002107242</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781558605947</subfield><subfield code="9">978-1-55860-594-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1558605940</subfield><subfield code="9">1-55860-594-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248505657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016967740</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-858</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T385</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6/01/516</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 320</subfield><subfield code="0">(DE-625)143657:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 756f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schneider, Philip J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric tools for computer graphics</subfield><subfield code="c">Philip J. Schneider ; David H. Eberly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLV, 1009 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Morgan Kaufmann series in computer graphics and geometric modeling</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-dimensional display systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computergrafik</subfield><subfield code="0">(DE-588)4010450-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computergrafik</subfield><subfield code="0">(DE-588)4010450-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eberly, David H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010247821&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010247821</subfield></datafield></record></collection> |
id | DE-604.BV016967740 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:12:18Z |
institution | BVB |
isbn | 9781558605947 1558605940 |
language | English |
lccn | 2002107242 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010247821 |
oclc_num | 248505657 |
open_access_boolean | |
owner | DE-858 DE-91G DE-BY-TUM DE-522 DE-523 DE-83 DE-739 DE-703 DE-706 DE-473 DE-BY-UBG |
owner_facet | DE-858 DE-91G DE-BY-TUM DE-522 DE-523 DE-83 DE-739 DE-703 DE-706 DE-473 DE-BY-UBG |
physical | XLV, 1009 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Morgan Kaufmann |
record_format | marc |
series2 | The Morgan Kaufmann series in computer graphics and geometric modeling |
spelling | Schneider, Philip J. Verfasser aut Geometric tools for computer graphics Philip J. Schneider ; David H. Eberly Amsterdam [u.a.] Morgan Kaufmann 2003 XLV, 1009 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier The Morgan Kaufmann series in computer graphics and geometric modeling Hier auch später erschienene, unveränderte Nachdrucke Datenverarbeitung Computer graphics Geometry Data processing Three-dimensional display systems Computergrafik (DE-588)4010450-3 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Computergrafik (DE-588)4010450-3 s Geometrie (DE-588)4020236-7 s DE-604 Eberly, David H. Sonstige oth Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010247821&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schneider, Philip J. Geometric tools for computer graphics Datenverarbeitung Computer graphics Geometry Data processing Three-dimensional display systems Computergrafik (DE-588)4010450-3 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4010450-3 (DE-588)4020236-7 |
title | Geometric tools for computer graphics |
title_auth | Geometric tools for computer graphics |
title_exact_search | Geometric tools for computer graphics |
title_full | Geometric tools for computer graphics Philip J. Schneider ; David H. Eberly |
title_fullStr | Geometric tools for computer graphics Philip J. Schneider ; David H. Eberly |
title_full_unstemmed | Geometric tools for computer graphics Philip J. Schneider ; David H. Eberly |
title_short | Geometric tools for computer graphics |
title_sort | geometric tools for computer graphics |
topic | Datenverarbeitung Computer graphics Geometry Data processing Three-dimensional display systems Computergrafik (DE-588)4010450-3 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Datenverarbeitung Computer graphics Geometry Data processing Three-dimensional display systems Computergrafik Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010247821&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schneiderphilipj geometrictoolsforcomputergraphics AT eberlydavidh geometrictoolsforcomputergraphics |