Graphs on surfaces and their applications:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
141 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 430 - 444 |
Beschreibung: | XV, 455 S. graph. Darst. |
ISBN: | 3540002030 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV016523768 | ||
003 | DE-604 | ||
005 | 20080611 | ||
007 | t | ||
008 | 030211s2004 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 966200063 |2 DE-101 | |
020 | |a 3540002030 |9 3-540-00203-0 | ||
035 | |a (OCoLC)441633949 | ||
035 | |a (DE-599)BVBBV016523768 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-19 |a DE-703 |a DE-20 |a DE-384 |a DE-355 |a DE-11 |a DE-188 |a DE-29T | ||
080 | |a 519.17 | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Lando, Sergej K. |d 1955- |e Verfasser |0 (DE-588)128627158 |4 aut | |
245 | 1 | 0 | |a Graphs on surfaces and their applications |c Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XV, 455 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 141 | |
490 | 1 | |a Encyclopaedia of mathematical sciences / Low-dimensional topology |v 2 | |
500 | |a Literaturverz. S. 430 - 444 | ||
650 | 0 | 7 | |a Topologische Graphentheorie |0 (DE-588)4341226-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Graphentheorie |0 (DE-588)4341226-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zvonkin, Aleksandr K. |d 1948- |e Verfasser |0 (DE-588)128627166 |4 aut | |
700 | 1 | |a Zagier, Don |d 1951- |e Sonstige |0 (DE-588)120415569 |4 oth | |
810 | 2 | |a Low-dimensional topology |t Encyclopaedia of mathematical sciences |v 2 |w (DE-604)BV014813608 |9 2 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 141 |w (DE-604)BV024126459 |9 141 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010211596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010211596 |
Datensatz im Suchindex
_version_ | 1804129839343468544 |
---|---|
adam_text | CONTENTS 0 INTRODUCTION: WHAT IS THIS BOOK ABOUT . . . . . . . . . . . .
. . . . . . . 1 0.1 NEW LIFE OF AN OLD THEORY . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1 0.2 PLAN OF THE BOOK . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.3
WHAT YOU WILL NOT FIND IN THIS BOOK . . . . . . . . . . . . . . . . . .
. . . 4 1 CONSTELLATIONS, COVERINGS, AND MAPS . . . . . . . . . . . . .
. . . . . . . . . . 7 1.1 CONSTELLATIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 RAMIFIED
COVERINGS OF THE SPHERE . . . . . . . . . . . . . . . . . . . . . . . .
. . 13 1.2.1 FIRST DEFINITIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 13 1.2.2 COVERINGS AND FUNDAMENTAL GROUPS .
. . . . . . . . . . . . . . . . 15 1.2.3 RAMIFIED COVERINGS OF THE
SPHERE AND CONSTELLATIONS . . . 18 1.2.4 SURFACES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3
MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 26 1.3.1 GRAPHS VERSUS MAPS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.2 MAPS:
TOPOLOGICAL DEFINITION . . . . . . . . . . . . . . . . . . . . . . . .
28 1.3.3 MAPS: PERMUTATIONAL MODEL . . . . . . . . . . . . . . . . . . .
. . . . . 33 1.4 CARTOGRAPHIC GROUPS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 39 1.5 HYPERMAPS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 1.5.1 HYPERMAPS AND BIPARTITE MAPS . . . . . . . . . . . . . . . . .
. . . . 43 1.5.2 TREES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 45 1.5.3 APPENDIX: FINITE LINEAR
GROUPS . . . . . . . . . . . . . . . . . . . . . 49 1.5.4 CANONICAL
TRIANGULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.6 MORE THAN THREE PERMUTATIONS . . . . . . . . . . . . . . . . . . . .
. . . . . . . 55 1.6.1 PREIMAGES OF A STAR OR OF A POLYGON. . . . . . .
. . . . . . . . . . . 56 1.6.2 CACTI . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.6.3 PREIMAGES
OF A JORDAN CURVE . . . . . . . . . . . . . . . . . . . . . . . 61 1.7
FURTHER DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 63 1.7.1 COVERINGS OF SURFACES OF HIGHER GENERA.
. . . . . . . . . . . . . . 63 1.7.2 RITT*S THEOREM. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 65 1.7.3 SYMMETRIC AND
REGULAR CONSTELLATIONS . . . . . . . . . . . . . . . 68 1.8 REVIEW OF
RIEMANN SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 70 XII CONTENTS 2 DESSINS D*ENFANTS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.1 INTRODUCTION:
THE BELYI THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2 PLANE TREES AND SHABAT POLYNOMIALS . . . . . . . . . . . . . . . . .
. . . . . . 80 2.2.1 GENERAL THEORY APPLIED TO TREES . . . . . . . . . .
. . . . . . . . . . 80 2.2.2 SIMPLE EXAMPLES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 88 2.2.3 FURTHER DISCUSSION. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.2.4
MORE ADVANCED EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . .
. 101 2.3 BELYI FUNCTIONS AND BELYI PAIRS . . . . . . . . . . . . . . .
. . . . . . . . . . . . 109 2.4 GALOIS ACTION AND ITS COMBINATORIAL
INVARIANTS . . . . . . . . . . . . . . 115 2.4.1 PRELIMINARIES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.4.2 GALOIS INVARIANTS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 118 2.4.3 TWO THEOREMS ON TREES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 123 2.5 SEVERAL FACETS OF BELYI
FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 126 2.5.1
A BOUND OF DAVENPORT*STOTHERS*ZANNIER . . . . . . . . . . . . . 126
2.5.2 JACOBI POLYNOMIALS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 131 2.5.3 FERMAT CURVE . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 135 2.5.4 THE ABC CONJECTURE . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2.5.5
JULIA SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 139 2.5.6 PELL EQUATION FOR POLYNOMIALS . . . . . . .
. . . . . . . . . . . . . . . . 142 2.6 PROOF OF THE BELYI THEOREM . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 2.6.1 THE
*ONLY IF* PART OF THE BELYI THEOREM. . . . . . . . . . . . . 146 2.6.2
COMMENTS TO THE PROOF OF THE *ONLY IF* PART . . . . . . . . . 147 2.6.3
THE *IF*, OR THE *OBVIOUS* PART OF THE BELYI THEOREM . 150 3
INTRODUCTION TO THE MATRIX INTEGRALS METHOD . . . . . . . . . . . . . .
155 3.1 MODEL PROBLEM: ONE-FACE MAPS . . . . . . . . . . . . . . . . . .
. . . . . . . . . 155 3.2 GAUSSIAN INTEGRALS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 160 3.2.1 THE GAUSSIAN
MEASURE ON THE LINE . . . . . . . . . . . . . . . . . . 160 3.2.2
GAUSSIAN MEASURES IN R K . . . . . . . . . . . . . . . . . . . . . . . .
. . . 162 3.2.3 INTEGRALS OF POLYNOMIALS AND THE WICK FORMULA . . . . .
. . 163 3.2.4 A GAUSSIAN MEASURE ON THE SPACE OF HERMITIAN MATRICES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.2.5 MATRIX
INTEGRALS AND POLYGON GLUINGS . . . . . . . . . . . . . . . . 167 3.2.6
COMPUTING GAUSSIAN INTEGRALS. UNITARY INVARIANCE . . . . . 171 3.2.7
COMPUTATION OF THE INTEGRAL FOR ONE FACE GLUINGS . . . . . 176 3.3
MATRIX INTEGRALS FOR MULTI-FACED MAPS . . . . . . . . . . . . . . . . .
. . . . 179 3.3.1 FEYNMAN DIAGRAMS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 179 3.3.2 THE MATRIX INTEGRAL FOR AN ARBITRARY
GLUING . . . . . . . . . . 180 3.3.3 GETTING RID OF DISCONNECTED GRAPHS
. . . . . . . . . . . . . . . . . 183 3.4 ENUMERATION OF COLORED GRAPHS
. . . . . . . . . . . . . . . . . . . . . . . . . . . 185 3.4.1
TWO-MATRIX INTEGRALS AND THE ISING MODEL . . . . . . . . . . . . 185
3.4.2 THE GAUSS PROBLEM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 188 3.4.3 MEANDERS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 190 3.4.4 ON ENUMERATION OF
MEANDERS . . . . . . . . . . . . . . . . . . . . . . . 191 3.5
COMPUTATION OF MATRIX INTEGRALS . . . . . . . . . . . . . . . . . . . .
. . . . . . 192 CONTENTS XIII 3.5.1 EXAMPLE: COMPUTING THE VOLUME OF THE
UNITARY GROUP 192 3.5.2 GENERALIZED HERMITE POLYNOMIALS . . . . . . . .
. . . . . . . . . . . . 195 3.5.3 PLANAR APPROXIMATIONS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 197 3.6 KORTEWEG*DE VRIES (KDV)
HIERARCHY FOR THE UNIVERSAL ONE-MATRIX MODEL . . . . . . . . . . . . . .
. . . . . . . . . 199 3.6.1 SINGULAR BEHAVIOR OF GENERATING FUNCTIONS .
. . . . . . . . . . 200 3.6.2 THE OPERATOR OF MULTIPLICATION BY * IN THE
DOUBLE SCALING LIMIT. . . . . . . . . . . . . . . . . . . . . . . . .
202 3.6.3 THE ONE-MATRIX MODEL AND THE KDV HIERARCHY . . . . . . . 204
3.6.4 CONSTRUCTING SOLUTIONS TO THE KDV HIERARCHY FROM THE SATO
GRASSMANIAN . . . . . . . . . . . . . . . . . . . . . . . . . 206 3.7
PHYSICAL INTERPRETATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 210 3.7.1 MATHEMATICAL RELATIONS BETWEEN PHYSICAL
MODELS . . . . . 211 3.7.2 FEYNMAN PATH INTEGRALS AND STRING THEORY . .
. . . . . . . . . 211 3.7.3 QUANTUM FIELD THEORY MODELS . . . . . . . .
. . . . . . . . . . . . . . 213 3.7.4 OTHER MODELS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 214 3.8 APPENDIX . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 215 3.8.1 GENERATING FUNCTIONS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 215 3.8.2 CONNECTED AND DISCONNECTED
OBJECTS . . . . . . . . . . . . . . . . 217 3.8.3 LOGARITHM OF A POWER
SERIES AND WICK*S FORMULA . . . . . . 219 4 GEOMETRY OF MODULI SPACES OF
COMPLEX CURVES . . . . . . . . . . . 223 4.1 GENERALITIES ON NODAL
CURVES AND ORBIFOLDS . . . . . . . . . . . . . . . . . 223 4.1.1
DIFFERENTIALS AND NODAL CURVES . . . . . . . . . . . . . . . . . . . . .
. 223 4.1.2 QUADRATIC DIFFERENTIALS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 226 4.1.3 ORBIFOLDS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 227 4.2 MODULI
SPACES OF COMPLEX STRUCTURES . . . . . . . . . . . . . . . . . . . . . .
232 4.3 THE DELIGNE*MUMFORD COMPACTIFICATION . . . . . . . . . . . . . .
. . . . . . 234 4.4 COMBINATORIAL MODELS OF THE MODULI SPACES OF CURVES.
. . . . . . . 237 4.5 ORBIFOLD EULER CHARACTERISTIC OF THE MODULI SPACES
. . . . . . . . . . 243 4.6 INTERSECTION INDICES ON MODULI SPACES AND
THE STRING AND DILATON EQUATIONS . . . . . . . . . . . . . . . . . . . .
. . 249 4.7 KDV HIERARCHY AND WITTEN*S CONJECTURE . . . . . . . . . . .
. . . . . . . . 256 4.8 THE KONTSEVICH MODEL . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 257 4.9 A SKETCH OF
KONTSEVICH*S PROOF OF WITTEN*S CONJECTURE . . . . . . . 263 4.9.1 THE
GENERATING FUNCTION FOR THE KONTSEVICH MODEL . . . . 263 4.9.2 THE
KONTSEVICH MODEL AND INTERSECTION THEORY . . . . . . . 264 4.9.3 THE
KONTSEVICH MODEL AND THE KDV EQUATION . . . . . . . . 266 5 MEROMORPHIC
FUNCTIONS AND EMBEDDED GRAPHS . . . . . . . . . . . . 269 5.1 THE
LYASHKO*LOOIJENGA MAPPING AND RIGID CLASSIFICATION OF GENERIC
POLYNOMIALS . . . . . . . . . . . . . 270 5.1.1 THE LYASHKO*LOOIJENGA
MAPPING . . . . . . . . . . . . . . . . . . . . 270 5.1.2 CONSTRUCTION
OF THE LL MAPPING ON THE SPACE OF GENERIC POLYNOMIALS . . . . . . . . .
. . . . . . . . 271 XIV CONTENTS 5.1.3 PROOF OF THE LYASHKO*LOOIJENGA
THEOREM . . . . . . . . . . . . . 273 5.2 RIGID CLASSIFICATION OF
NONGENERIC POLYNOMIALS AND THE GEOMETRY OF THE DISCRIMINANT . . . . . .
. . . . . . . . . . . . . . . 277 5.2.1 THE DISCRIMINANT IN THE SPACE OF
POLYNOMIALS AND ITS STRATIFICATION. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 277 5.2.2 STATEMENT OF THE ENUMERATION THEOREM .
. . . . . . . . . . . . . 279 5.2.3 PRIMITIVE STRATA . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 280 5.2.4 PROOF OF THE
ENUMERATION THEOREM . . . . . . . . . . . . . . . . . . 282 5.3 RIGID
CLASSIFICATION OF GENERIC MEROMORPHIC FUNCTIONS AND GEOMETRY OF MODULI
SPACES OF CURVES . . . . . . . . . . . . . . . . . . 288 5.3.1 STATEMENT
OF THE ENUMERATION THEOREM . . . . . . . . . . . . . . 288 5.3.2
CALCULATIONS: GENUS 0 AND GENUS 1 . . . . . . . . . . . . . . . . . .
289 5.3.3 CONES AND THEIR SEGRE CLASSES . . . . . . . . . . . . . . . .
. . . . . . 292 5.3.4 CONES OF PRINCIPAL PARTS . . . . . . . . . . . . .
. . . . . . . . . . . . . . 294 5.3.5 HURWITZ SPACES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 297 5.3.6 COMPLETED
HURWITZ SPACES AND STABLE MAPPINGS . . . . . . 299 5.3.7 EXTENDING THE
LL MAPPING TO COMPLETED HURWITZ SPACES . . . . . . . . . . . . . . . . .
. . . . . . 300 5.3.8 COMPUTING THE TOP SEGRE CLASS; END OF THE PROOF .
. . . . 302 5.4 THE BRAID GROUP ACTION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 304 5.4.1 BRAID GROUPS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 5.4.2 BRAID
GROUP ACTION ON CACTI: GENERALITIES . . . . . . . . . . . . 309 5.4.3
EXPERIMENTAL STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 312 5.4.4 PRIMITIVE AND IMPRIMITIVE MONODROMY GROUPS . . . . . .
. . 318 5.4.5 PERSPECTIVES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 325 5.5 MEGAMAPS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
5.5.1 HURWITZ SPACES OF COVERINGS WITH FOUR RAMIFICATION POINTS . . . .
. . . . . . . . . . . . . . . . . . 328 5.5.2 REPRESENTATION OF H AS A
DESSIN D*ENFANT . . . . . . . . . . . . 329 5.5.3 EXAMPLES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 6
ALGEBRAIC STRUCTURES ASSOCIATED WITH EMBEDDED GRAPHS .. 337 6.1 THE
BIALGEBRA OF CHORD DIAGRAMS . . . . . . . . . . . . . . . . . . . . . .
. . . 337 6.1.1 CHORD DIAGRAMS AND ARC DIAGRAMS . . . . . . . . . . . .
. . . . . . 337 6.1.2 THE 4-TERM RELATION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 339 6.1.3 MULTIPLYING CHORD DIAGRAMS. . .
. . . . . . . . . . . . . . . . . . . . . 342 6.1.4 A BIALGEBRA
STRUCTURE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.1.5 STRUCTURE THEOREM FOR THE BIALGEBRA M . . . . . . . . . . . . . .
346 6.1.6 PRIMITIVE ELEMENTS OF THE BIALGEBRA OF CHORD DIAGRAMS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 6.2 KNOT
INVARIANTS AND ORIGINS OF CHORD DIAGRAMS . . . . . . . . . . . . . 350
6.2.1 KNOT INVARIANTS AND THEIR EXTENSION TO SINGULAR KNOTS . 350 6.2.2
INVARIANTS OF FINITE ORDER . . . . . . . . . . . . . . . . . . . . . . .
. . . 353 6.2.3 DEDUCING 1-TERM AND 4-TERM RELATIONS FOR INVARIANTS . .
355 CONTENTS XV 6.2.4 CHORD DIAGRAMS OF SINGULAR LINKS . . . . . . . . .
. . . . . . . . . . 357 6.3 WEIGHT SYSTEMS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 359 6.3.1 A
BIALGEBRA STRUCTURE ON THE MODULE V OF VASSILIEV KNOT INVARIANTS . . . .
. . . . . . . . . . . . . . . . . . . . . 359 6.3.2 RENORMALIZATION. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
6.3.3 WEIGHT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 362 6.3.4 VASSILIEV KNOT INVARIANTS AND OTHER KNOT
INVARIANTS . . . 364 6.4 CONSTRUCTING WEIGHT SYSTEMS VIA INTERSECTION
GRAPHS . . . . . . . . 367 6.4.1 THE INTERSECTION GRAPH OF A CHORD
DIAGRAM . . . . . . . . . . 367 6.4.2 TUTTE FUNCTIONS FOR GRAPHS . . . .
. . . . . . . . . . . . . . . . . . . . . 368 6.4.3 THE 4-BIALGEBRA OF
GRAPHS. . . . . . . . . . . . . . . . . . . . . . . . . . 369 6.4.4 THE
BIALGEBRA OF WEIGHTED GRAPHS . . . . . . . . . . . . . . . . . . 379
6.4.5 CONSTRUCTING VASSILIEV INVARIANTS FROM 4-INVARIANTS . . . . 383
6.5 CONSTRUCTING WEIGHT SYSTEMS VIA LIE ALGEBRAS . . . . . . . . . . . .
. . 384 6.5.1 FREE ASSOCIATIVE ALGEBRAS . . . . . . . . . . . . . . . .
. . . . . . . . . . 385 6.5.2 UNIVERSAL ENVELOPING ALGEBRAS OF LIE
ALGEBRAS . . . . . . . . 387 6.5.3 EXAMPLES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 390 6.6 SOME OTHER
ALGEBRAS OF EMBEDDED GRAPHS . . . . . . . . . . . . . . . . . 393 6.6.1
CIRCLE DIAGRAMS AND OPEN DIAGRAMS. . . . . . . . . . . . . . . . . 393
6.6.2 THE ALGEBRA OF 3-GRAPHS . . . . . . . . . . . . . . . . . . . . .
. . . . . . 395 6.6.3 THE TEMPERLEY*LIEB ALGEBRA . . . . . . . . . . . .
. . . . . . . . . . . 395 A APPLICATIONS OF THE REPRESENTATION THEORY OF
FINITE GROUPS ( BY DON ZAGIER ) . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 399 A.1 REPRESENTATION THEORY OF FINITE GROUPS . . . . .
. . . . . . . . . . . . . . . 399 A.1.1 IRREDUCIBLE REPRESENTATIONS AND
CHARACTERS . . . . . . . . . . . 399 A.1.2 EXAMPLES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 A.1.3
FROBENIUS*S FORMULA . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 406 A.2 APPLICATIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 408 A.2.1 REPRESENTATIONS
OF S N AND CANONICAL POLYNOMIALS ASSOCIATED TO PARTITIONS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 409 A.2.2 EXAMPLES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
A.2.3 FIRST APPLICATION: ENUMERATION OF POLYGON GLUINGS . . . . 416
A.2.4 SECOND APPLICATION: THE GOULDEN*JACKSON FORMULA . . . . 418 A.2.5
THIRD APPLICATION: *MIRROR SYMMETRY* IN DIMENSION ONE . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 423 REFERENCES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 429 INDEX . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 445
|
any_adam_object | 1 |
author | Lando, Sergej K. 1955- Zvonkin, Aleksandr K. 1948- |
author_GND | (DE-588)128627158 (DE-588)128627166 (DE-588)120415569 |
author_facet | Lando, Sergej K. 1955- Zvonkin, Aleksandr K. 1948- |
author_role | aut aut |
author_sort | Lando, Sergej K. 1955- |
author_variant | s k l sk skl a k z ak akz |
building | Verbundindex |
bvnumber | BV016523768 |
classification_rvk | SK 890 |
ctrlnum | (OCoLC)441633949 (DE-599)BVBBV016523768 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01912nam a2200433 cb4500</leader><controlfield tag="001">BV016523768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080611 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030211s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">966200063</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540002030</subfield><subfield code="9">3-540-00203-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)441633949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016523768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">519.17</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lando, Sergej K.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128627158</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graphs on surfaces and their applications</subfield><subfield code="c">Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 455 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">141</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences / Low-dimensional topology</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 430 - 444</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Graphentheorie</subfield><subfield code="0">(DE-588)4341226-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Graphentheorie</subfield><subfield code="0">(DE-588)4341226-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zvonkin, Aleksandr K.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128627166</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zagier, Don</subfield><subfield code="d">1951-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)120415569</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Low-dimensional topology</subfield><subfield code="t">Encyclopaedia of mathematical sciences</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV014813608</subfield><subfield code="9">2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">141</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">141</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010211596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010211596</subfield></datafield></record></collection> |
id | DE-604.BV016523768 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:11:31Z |
institution | BVB |
isbn | 3540002030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010211596 |
oclc_num | 441633949 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-20 DE-384 DE-355 DE-BY-UBR DE-11 DE-188 DE-29T |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-20 DE-384 DE-355 DE-BY-UBR DE-11 DE-188 DE-29T |
physical | XV, 455 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences / Low-dimensional topology |
spelling | Lando, Sergej K. 1955- Verfasser (DE-588)128627158 aut Graphs on surfaces and their applications Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier Berlin [u.a.] Springer 2004 XV, 455 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Encyclopaedia of mathematical sciences 141 Encyclopaedia of mathematical sciences / Low-dimensional topology 2 Literaturverz. S. 430 - 444 Topologische Graphentheorie (DE-588)4341226-9 gnd rswk-swf Topologische Graphentheorie (DE-588)4341226-9 s DE-604 Zvonkin, Aleksandr K. 1948- Verfasser (DE-588)128627166 aut Zagier, Don 1951- Sonstige (DE-588)120415569 oth Low-dimensional topology Encyclopaedia of mathematical sciences 2 (DE-604)BV014813608 2 Encyclopaedia of mathematical sciences 141 (DE-604)BV024126459 141 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010211596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lando, Sergej K. 1955- Zvonkin, Aleksandr K. 1948- Graphs on surfaces and their applications Encyclopaedia of mathematical sciences Topologische Graphentheorie (DE-588)4341226-9 gnd |
subject_GND | (DE-588)4341226-9 |
title | Graphs on surfaces and their applications |
title_auth | Graphs on surfaces and their applications |
title_exact_search | Graphs on surfaces and their applications |
title_full | Graphs on surfaces and their applications Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier |
title_fullStr | Graphs on surfaces and their applications Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier |
title_full_unstemmed | Graphs on surfaces and their applications Sergei K. Lando ; Alexander K. Zvonkin. Appendix by Don B. Zagier |
title_short | Graphs on surfaces and their applications |
title_sort | graphs on surfaces and their applications |
topic | Topologische Graphentheorie (DE-588)4341226-9 gnd |
topic_facet | Topologische Graphentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010211596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014813608 (DE-604)BV024126459 |
work_keys_str_mv | AT landosergejk graphsonsurfacesandtheirapplications AT zvonkinaleksandrk graphsonsurfacesandtheirapplications AT zagierdon graphsonsurfacesandtheirapplications |