Dirac fields on asymptotically flat space times:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Polska Akad. Nauk, Inst. Matematyczny
2002
|
Schriftenreihe: | Dissertationes mathematicae
408 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 85, III S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV016477317 | ||
003 | DE-604 | ||
005 | 20040123 | ||
007 | t | ||
008 | 030130s2002 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)51170204 | ||
035 | |a (DE-599)BVBBV016477317 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-29T |a DE-12 |a DE-739 |a DE-703 | ||
050 | 0 | |a QA1 | |
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a PHY 022d |2 stub | ||
084 | |a MAT 350d |2 stub | ||
100 | 1 | |a Nicolas, Jean-Philippe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dirac fields on asymptotically flat space times |c J.-P. Nicolas |
264 | 1 | |a Warszawa |b Polska Akad. Nauk, Inst. Matematyczny |c 2002 | |
300 | |a 85, III S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 408 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Black holes (Astronomy) |x Mathematical models | |
650 | 4 | |a Cauchy problem | |
650 | 4 | |a Dirac equation | |
650 | 4 | |a Sobolev spaces | |
650 | 4 | |a Space and time |x Mathematical models | |
830 | 0 | |a Dissertationes mathematicae |v 408 |w (DE-604)BV000003039 |9 408 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010186976 |
Datensatz im Suchindex
_version_ | 1804129805133676544 |
---|---|
adam_text | Titel: Dirac fields on asymptotically flat space times
Autor: Nicolas, Jean-Philippe
Jahr: 2002
CONTENTS
1. Introduction......................................................................................................................................................5
2. Geometrical and functional framework..................................................................................................10
2.1. Notations..................................................................................................................................................10
2.2. The principles of the 3-1-1 decomposition........1....................................................................11
2.3. Classes of asymptotically flat space-times....................................................................................13
3. Dirac fields on globally hyperbolic space-times....................................................................................16
3.1. The Dirac and Weyl equations..........................................................................................................16
3.2. 3-1-1 decomposition of the equation..................................................................................................20
4. The general Cauchy problem......................................................................................................................26
5. The case of the Schwarzschild geometry................................................................................................41
5.1. The exterior of the black hole............................................................................................................42
5.1.1. The spacelike geometry of the exterior of the black hole............................................42
5.1.2. The global exterior Cauchy problem..................................................................................46
5.2. Maximal extension of Schwarzschild s space-time......................................................................52
5.2.1. Kruskal-Szekeres coordinates................................................................................................53
5.2.2. Maximal Schwarzschild space-time......................................................................................54
6. Dirac s equation on the Kerr metric........................................................................................................57
6.1. The exterior of the black hole............................................................................................................58
6.1.1. The spacelike geometry of block 1........................................................................................59
6.1.2. The global exterior Cauchy problem..................................................................................65
6.2. Maximal extension of Kerr s space-time........................................................................................70
6.2.1. Kerr-star and star-Kerr coordinates....................................................................................70
6.2.2. Maximal slow Kerr space-time..............................................................................................74
7. Concluding remarks........................................................................................................................................75
Appendix A. A choice of spin-frame and the expression of the time connection terms in
Kerr and Schwarzschild geometries..........................................................................................................76
A.l. A choice of spin-frame........................................................................................................................77
A.2. The timelike connection terms..........................................................................................................78
A.3. Explicit expressions in the Schwarzschild case..........................................................................79
Appendix B. An expression of the Dirac equation outside a Kerr black hole................................80
Bibliography..........................................................................................................................................................82
2000 Mathematics Subject Classification: 35Q75, 35L40, 35L45, 83C57, 83C60.
Received 9.7.2001.
|
any_adam_object | 1 |
author | Nicolas, Jean-Philippe |
author_facet | Nicolas, Jean-Philippe |
author_role | aut |
author_sort | Nicolas, Jean-Philippe |
author_variant | j p n jpn |
building | Verbundindex |
bvnumber | BV016477317 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 |
callnumber-search | QA1 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 390 |
classification_tum | PHY 022d MAT 350d |
ctrlnum | (OCoLC)51170204 (DE-599)BVBBV016477317 |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01494nam a2200409 cb4500</leader><controlfield tag="001">BV016477317</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030130s2002 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51170204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016477317</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 022d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 350d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nicolas, Jean-Philippe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dirac fields on asymptotically flat space times</subfield><subfield code="c">J.-P. Nicolas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Polska Akad. Nauk, Inst. Matematyczny</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">85, III S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">408</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black holes (Astronomy)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirac equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space and time</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">408</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">408</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010186976</subfield></datafield></record></collection> |
id | DE-604.BV016477317 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:10:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010186976 |
oclc_num | 51170204 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-12 DE-739 DE-703 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-12 DE-739 DE-703 |
physical | 85, III S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Polska Akad. Nauk, Inst. Matematyczny |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Nicolas, Jean-Philippe Verfasser aut Dirac fields on asymptotically flat space times J.-P. Nicolas Warszawa Polska Akad. Nauk, Inst. Matematyczny 2002 85, III S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 408 Mathematisches Modell Black holes (Astronomy) Mathematical models Cauchy problem Dirac equation Sobolev spaces Space and time Mathematical models Dissertationes mathematicae 408 (DE-604)BV000003039 408 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nicolas, Jean-Philippe Dirac fields on asymptotically flat space times Dissertationes mathematicae Mathematisches Modell Black holes (Astronomy) Mathematical models Cauchy problem Dirac equation Sobolev spaces Space and time Mathematical models |
title | Dirac fields on asymptotically flat space times |
title_auth | Dirac fields on asymptotically flat space times |
title_exact_search | Dirac fields on asymptotically flat space times |
title_full | Dirac fields on asymptotically flat space times J.-P. Nicolas |
title_fullStr | Dirac fields on asymptotically flat space times J.-P. Nicolas |
title_full_unstemmed | Dirac fields on asymptotically flat space times J.-P. Nicolas |
title_short | Dirac fields on asymptotically flat space times |
title_sort | dirac fields on asymptotically flat space times |
topic | Mathematisches Modell Black holes (Astronomy) Mathematical models Cauchy problem Dirac equation Sobolev spaces Space and time Mathematical models |
topic_facet | Mathematisches Modell Black holes (Astronomy) Mathematical models Cauchy problem Dirac equation Sobolev spaces Space and time Mathematical models |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT nicolasjeanphilippe diracfieldsonasymptoticallyflatspacetimes |