Geometric stochastic calculus:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Bonn
Univ.
2002
|
Schriftenreihe: | Vorlesungsreihe / Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen
45 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Rudolph-Lipschitz-Vorlesung |
Beschreibung: | 59 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV016476560 | ||
003 | DE-604 | ||
007 | t | ||
008 | 030130s2002 |||| 00||| eng d | ||
016 | 7 | |a 966217578 |2 DE-101 | |
035 | |a (OCoLC)52684699 | ||
035 | |a (DE-599)BVBBV016476560 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-706 | ||
100 | 1 | |a Malliavin, Paul |d 1925-2010 |e Verfasser |0 (DE-588)115728023 |4 aut | |
245 | 1 | 0 | |a Geometric stochastic calculus |c Paul Malliavin |
264 | 1 | |a Bonn |b Univ. |c 2002 | |
300 | |a 59 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Vorlesungsreihe / Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen |v 45 | |
500 | |a Rudolph-Lipschitz-Vorlesung | ||
810 | 2 | |a Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen |t Vorlesungsreihe |v 45 |w (DE-604)BV005631830 |9 45 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186312&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010186312 |
Datensatz im Suchindex
_version_ | 1807682919195475968 |
---|---|
adam_text |
CONTENTS
1
UNIVERSAL
PROBABILITY
SPACE
1
1.1
WIENER
MEASURE
ASSOCIATED
TO
AN
ELLIPTIC
OPERATOR
.
1
1.2
PROBLEM
OF
UNIVERSALITY
.
2
1.3
RESOLUTION
OF
THE
UNIVERSALITY
PROBLEM
FOR
RIEMANNIAN
MANIFOLDS
2
1.4
THE
BROWNIAN
MOTIONS
ON
R
D
.
3
1.5
SOLUTION
OF
THE
UNIVERSALITY
PROBLEM
BY
THE
ITO
MAP
.
4
1.6
UNIVERSAL
MODEL
FOR
THE
BROWNIAN
MOTION
ON
A
RIEMANNIAN
MANIFOLD
.
6
2
DIFFERENTIAL
CALCULUS
8
2.1
CAMERON
-
MARTIN
THEOREM
.
8
2.2
NOTION
OF
DIVERGENCE
.
12
2.3
SHIGEKAWA
IDENTITY
.
13
2.4
METHOD
OF
PROOF
OF
SHIGEKAWA
.
14
3
STOCHASTIC
INTEGRALS
15
3.1
MAIN
OBJECTIVES
.
15
3.2
PARTIAL
DERIVATIVE
.
15
3.3
WIENER
STOCHASTIC
INTEGRAL
.
16
3.4
AMPLIFICATION:
ITO
STOCHASTIC
INTEGRAL
.
18
3.5
ITO
THEOREM
OF
CONSERVATION
OF
ENERGY
.
18
3.6
SEMI
MARTINGALE
.
19
3.7
STRUCTURE
THEOREM
.
19
3.8
CLARK-OCONE
FORMULA
.
20
4
STOCHASTIC
CALCULUS
22
4.1
ITO
SDE
VERSUS
STRATONOVITCH
SDE
.
22
4.2
CALCULUS
OF
VARIATION
ON
THE
HORIZONTAL
CONTROL
MAP
ON
THE
BUNDLE
OF
FRAMES
.
23
4.2.1
CURVATURE
TENSOR
OF
RIEMANN
AS
AN
OBSTRUCTION
OF
THE
FLATNESS
.
24
CONTENTS
1
4.3
STOCHASTIC
CALCULUS
OF
VARIATION
UPON
THE
STARTING
POINT
.
25
4.4
STOCHASTIC
CALCULUS
OF
VARIATION
OF
THE
PATH
SPACE
.
25
4.5
FORMULA
OF
INTEGRATION
BY
PART
ON
P
RNO
(M)
.
27
4.6
CAMERON
-
MARTIN
SPACE
.
27
4.7
CLARK-OCONE-BISMUT
FORMULA
.
28
5
STRUCTURAL
EQUATION
29
5.1
STRUCTURAL
EQUATION
.
30
5.2
MAIN
THEOREM:
.
30
5.3
LEVI-CIVITA
CONNECTION
.
33
5.4
WEITZENBBCK
IDENTITY
.
34
6
ANTICIPATIVE
STOCHASTIC
INTEGRAL
35
6.1
ANTICIPATIVE
INTEGRAL
AS
DIVERGENCE
.
35
6.2
CONSTRUCTION
BY
APPROXIMATION
BY
FINITE
SUMS
.
35
6.3
MODIFIED
STRATONOVITCH
AND
MODIFIED
NPZ
INTEGRAL
ASSOCIATED
TO
TANGENT
PROCESS
.
39
7
FRAME
BUNDLE
AND
WEITZENBOCK
FORMULA
42
7.1
COVARIANT
DERIVATIVE
.
44
7.2
METHODOLOGY
OF
PROOF
OF
STRUCTURE
THEOREM
.
46
7.3
ORNSTEIN
-
UHLENBECK
PROCESS
ON
P
TNO
(M)
.
47
8
PASSAGE
FROM
PATH
TO
THE
LOOP
49
8.1
DOOB
'
S
H-THEORY
.
49
8.2
STOCHASTIC
CALCULUS
OF
VARIATION
.
50
8.3
SMOOTHNESS
OF
LAW
.
51
8.4
COVERING
VECTOR
FIELD
.
51
8.5
THEOREM
OF
CONTINUOUS
DESINTEGRATION
.
52
8.6
QUASI
SURE
ANALYSIS
.
53
8.7
THEOREM
OF
TIGHTNESS
OF
CAPACITY
.
53
8.8
THE
WATANABE
DISTRIBUTION
.
54
8.9
PROOF
OF
THE
CONTINUOUS
DESINTEGRATION
ALONG
A
NON
DEGENER
ATED
MAP
.
55
8.10
REDEFINITION
.
56
8.11
PRINCIPLE
OF
DESCENT
.
57
8.12
APPLICATION
OF
THE
PRINCIPLE
OF
DESCENT
TO
A
FORMULA
OF
INTEGRA
TION
BY
PART
ON
LOOP
SPACE
.
57 |
any_adam_object | 1 |
author | Malliavin, Paul 1925-2010 |
author_GND | (DE-588)115728023 |
author_facet | Malliavin, Paul 1925-2010 |
author_role | aut |
author_sort | Malliavin, Paul 1925-2010 |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV016476560 |
ctrlnum | (OCoLC)52684699 (DE-599)BVBBV016476560 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV016476560</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030130s2002 |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">966217578</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52684699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016476560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malliavin, Paul</subfield><subfield code="d">1925-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115728023</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric stochastic calculus</subfield><subfield code="c">Paul Malliavin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bonn</subfield><subfield code="b">Univ.</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">59 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Vorlesungsreihe / Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen</subfield><subfield code="v">45</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Rudolph-Lipschitz-Vorlesung</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen</subfield><subfield code="t">Vorlesungsreihe</subfield><subfield code="v">45</subfield><subfield code="w">(DE-604)BV005631830</subfield><subfield code="9">45</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186312&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010186312</subfield></datafield></record></collection> |
id | DE-604.BV016476560 |
illustrated | Not Illustrated |
indexdate | 2024-08-18T00:26:11Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010186312 |
oclc_num | 52684699 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-706 |
owner_facet | DE-19 DE-BY-UBM DE-706 |
physical | 59 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Univ. |
record_format | marc |
series2 | Vorlesungsreihe / Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen |
spelling | Malliavin, Paul 1925-2010 Verfasser (DE-588)115728023 aut Geometric stochastic calculus Paul Malliavin Bonn Univ. 2002 59 S. txt rdacontent n rdamedia nc rdacarrier Vorlesungsreihe / Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen 45 Rudolph-Lipschitz-Vorlesung Rheinische Friedrich-Wilhelms-Universität Bonn, Sonderforschungsbereich 256 Nichtlineare Partielle Differentialgleichungen Vorlesungsreihe 45 (DE-604)BV005631830 45 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186312&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Malliavin, Paul 1925-2010 Geometric stochastic calculus |
title | Geometric stochastic calculus |
title_auth | Geometric stochastic calculus |
title_exact_search | Geometric stochastic calculus |
title_full | Geometric stochastic calculus Paul Malliavin |
title_fullStr | Geometric stochastic calculus Paul Malliavin |
title_full_unstemmed | Geometric stochastic calculus Paul Malliavin |
title_short | Geometric stochastic calculus |
title_sort | geometric stochastic calculus |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010186312&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005631830 |
work_keys_str_mv | AT malliavinpaul geometricstochasticcalculus |