Transverse patterns in nonlinear optical resonators:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2003
|
Schriftenreihe: | Springer tracts in modern physics
183 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index. |
Beschreibung: | XIV, 226 S. graph. Darst. |
ISBN: | 3540004343 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV016475426 | ||
003 | DE-604 | ||
005 | 20050517 | ||
007 | t | ||
008 | 030128s2003 xxud||| |||| 00||| eng d | ||
016 | 7 | |a 966200071 |2 DE-101 | |
020 | |a 3540004343 |9 3-540-00434-3 | ||
035 | |a (OCoLC)51454592 | ||
035 | |a (DE-599)BVBBV016475426 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-19 |a DE-91G |a DE-703 |a DE-11 |a DE-188 | ||
050 | 0 | |a QC476.5 | |
082 | 0 | |a 621.36/6 |2 21 | |
084 | |a UD 9310 |0 (DE-625)145547: |2 rvk | ||
084 | |a UH 5680 |0 (DE-625)145685: |2 rvk | ||
084 | |a 29 |2 sdnb | ||
084 | |a PHY 380f |2 stub | ||
100 | 1 | |a Staliūnas, Ke̜stutis |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transverse patterns in nonlinear optical resonators |c Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2003 | |
300 | |a XIV, 226 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer tracts in modern physics |v 183 | |
500 | |a Includes bibliographical references and index. | ||
650 | 7 | |a Física moderna |2 larpcal | |
650 | 4 | |a Lasers |x Resonators | |
650 | 4 | |a Optical resonance | |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optischer Resonator |0 (DE-588)4172678-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Musterbildung |0 (DE-588)4137934-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |D s |
689 | 0 | 1 | |a Optischer Resonator |0 (DE-588)4172678-9 |D s |
689 | 0 | 2 | |a Musterbildung |0 (DE-588)4137934-2 |D s |
689 | 0 | 3 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sánchez Morcillo, Victor J. |e Verfasser |4 aut | |
830 | 0 | |a Springer tracts in modern physics |v 183 |w (DE-604)BV000000153 |9 183 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010185695&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010185695 |
Datensatz im Suchindex
_version_ | 1804129803380457472 |
---|---|
adam_text | CONTENTS
1 INTRODUCTION
..............................................
1
1.1 HISTORICALSURVEY....................................... 2
1.2 PATTERNSINNONLINEAROPTICALRESONATORS.................. 4
1.2.1 LOCALIZEDSTRUCTURES:VORTICESANDSOLITONS .......... 6
1.2.2 EXTENDEDPATTERNS ............................... 8
1.3 OPTICALPATTERNSINOTHERCONFIGURATIONS.................. 11
1.3.1 MIRRORLESSCONFIGURATION .......................... 11
1.3.2 SINGLE-FEEDBACK-MIRRORCONFIGURATION............... 12
1.3.3 OPTICALFEEDBACKLOOPS........................... 12
1.4 THECONTENTSOFTHISBOOK............................... 15
REFERENCES ................................................. 19
2 ORDER PARAMETER EQUATIONS FOR LASERS
....................
33
2.1 MODELOFA LASER ....................................... 34
2.2 LINEAR STABILITY ANALYSIS . ............................... 36
2.3 DERIVATIONOFTHELASERORDERPARAMETEREQUATION.......... 41
2.3.1 ADIABATICELIMINATION ............................ 41
2.3.2 MULTIPLE-SCALEEXPANSION.......................... 46
REFERENCES ................................................. 48
3 ORDER PARAMETER EQUATIONS
FOR OTHER NONLINEAR RESONATORS
..........................
51
3.1 OPTICAL PARAMETRIC OSCILLATORS ........................... 51
3.2 THEREALSWIFT*HOHENBERGEQUATIONFORDOPOS ........... 52
3.2.1 LINEAR STABILITY ANALYSIS .......................... 52
3.2.2 SCALES........................................... 53
3.2.3 DERIVATIONOFTHEOPE ............................ 54
3.3 THECOMPLEXSWIFT*HOHENBERGEQUATIONFOROPOS......... 55
3.3.1 LINEAR STABILITY ANALYSIS .......................... 56
3.3.2 SCALES........................................... 57
3.3.3 DERIVATIONOFTHEOPE ............................ 57
3.4 THE ORDER PARAMETER EQUATION
FOR PHOTOREFRACTIVE OSCILLATORS . ........................... 59
3.4.1 DESCRIPTIONANDMODEL............................ 59
3.4.2 ADIABATICELIMINATIONANDOPERATORINVERSION ....... 60
XC
O
N
T
E
N
T
S
3.5 PHENOMENOLOGICAL DERIVATION
OFORDERPARAMETEREQUATIONS ........................... 61
REFERENCES ................................................. 63
4 ZERO DETUNING: LASER HYDRODYNAMICS
AND OPTICAL VORTICES
......................................
65
4.1 HYDRODYNAMICFORM.................................... 65
4.2 OPTICALVORTICES........................................ 67
4.2.1 STRONGDIFFRACTION ................................ 68
4.2.2 STRONGDIFFUSION.................................. 71
4.2.3 INTERMEDIATECASES ............................... 72
4.3 VORTEXINTERACTIONS ..................................... 74
REFERENCES ................................................. 79
5 FINITE DETUNING: VORTEX SHEETS
AND VORTEX LATTICES
.......................................
81
5.1 VORTICES*RIDING*ONTILTEDWAVES........................ 82
5.2 DOMAINSOFTILTEDWAVES................................ 84
5.3 SQUAREVORTEXLATTICES.................................. 87
REFERENCES ................................................. 90
6 RESONATORS WITH CURVED MIRRORS
..........................
91
6.1 WEAKLYCURVEDMIRRORS ................................. 92
6.2 MODEEXPANSION ....................................... 93
6.2.1 CIRCLINGVORTICES ................................. 94
6.2.2 LOCKINGOFTRANSVERSEMODES ...................... 95
6.3 DEGENERATERESONATORS.................................. 97
REFERENCES ................................................. 102
7 THE RESTLESS VORTEX
......................................
103
7.1 THEMODEL ............................................ 103
7.2 SINGLEVORTEX .......................................... 105
7.3 VORTEXLATTICES......................................... 108
7.3.1 *OPTICAL* OSCILLATION MODE ........................ 109
7.3.2 PARALLELTRANSLATIONOFA VORTEXLATTICE............... 110
7.4 EXPERIMENTALDEMONSTRATIONOFTHE*RESTLESS*V
ORTEX....... 111
7.4.1 MODEEXPANSION ................................. 111
7.4.2 PHASE-INSENSITIVEMODES........................... 113
7.4.3 PHASE-SENSITIVEMODES ............................ 114
REFERENCES ................................................. 115
8 DOMAINS AND SPATIAL SOLITONS
.............................
117
8.1 SUBCRITICALVERSUSSUPERCRITICALSYSTEMS................... 117
8.2 MECHANISMSALLOWINGSOLITONFORMATION................... 118
8.2.1 SUPERCRITICALHOPFBIFURCATION ..................... 119
CONTENTS XI
8.2.2 SUBCRITICALHOPFBIFURCATION ....................... 120
8.3 AMPLITUDEANDPHASEDOMAINS........................... 122
8.4 AMPLITUDEANDPHASESPATIALSOLITONS..................... 123
REFERENCES ................................................. 124
9 SUBCRITICAL SOLITONS I: SATURABLE ABSORBER
................
125
9.1 MODELANDORDERPARAMETEREQUATION .................... 125
9.2 AMPLITUDEDOMAINSANDSPATIALSOLITONS .................. 127
9.3 NUMERICALSIMULATIONS .................................. 129
9.3.1 SOLITONFORMATION ................................ 129
9.3.2 SOLITON MANIPULATION: POSITIONING, PROPAGATION,
TRAPPINGANDSWITCHING........................... 132
9.4 EXPERIMENTS........................................... 133
REFERENCES ................................................. 138
10 SUBCRITICAL SOLITONS II:
NONLINEAR RESONANCE
.....................................
139
10.1 ANALYSIS OF THE HOMOGENEOUS STATE.
NONLINEARRESONANCE.................................... 139
10.2 SPATIALSOLITONS ........................................ 141
10.2.1 ONE-DIMENSIONALCASE ............................ 141
10.2.2 TWO-DIMENSIONALCASE............................ 144
REFERENCES ................................................. 146
11 PHASE DOMAINS AND PHASE SOLITONS
.......................
147
11.1 PATTERNS IN SYSTEMS WITH A REAL-VALUED ORDER PARAMETER . . . 147
11.2 PHASEDOMAINS......................................... 148
11.3 DYNAMICS OF DOMAIN BOUNDARIES ......................... 150
11.3.1 VARIATIONALAPPROACH ............................. 150
11.3.2 TWO-DIMENSIONALDOMAINS ........................ 152
11.4 PHASESOLITONS ......................................... 155
11.5 NONMONOTONICALLYDECAYINGFRONTS ....................... 157
11.6 EXPERIMENTAL REALIZATION OF PHASE DOMAINS
ANDSOLITONS ........................................... 160
11.7 DOMAIN BOUNDARIES AND IMAGE PROCESSING ................. 163
REFERENCES ................................................. 166
12 TURING PATTERNS IN NONLINEAR OPTICS
......................
169
12.1 THETURINGMECHANISMINNONLINEAROPTICS................ 169
12.2 LASERWITHDIFFUSINGGAIN ............................... 171
12.2.1 GENERALCASE .................................... 172
12.2.2 LASERWITHSATURABLEABSORBER..................... 174
12.2.3 STABILIZATION OF SPATIAL SOLITONS BY GAIN DIFFUSION .... 176
12.3 OPTICAL PARAMETRIC OSCILLATOR
WITHDIFFRACTINGPUMP .................................. 180
XII CONTENTS
12.3.1 TURING INSTABILITY IN A DOPO ...................... 181
12.3.2 STOCHASTICPATTERNS............................... 184
12.3.3 SPATIAL SOLITONS INFLUENCED BY PUMP DIFFRACTION ...... 187
REFERENCES ................................................. 191
13 THREE-DIMENSIONAL PATTERNS
..............................
193
13.1 THESYNCHRONOUSLYPUMPEDDOPO....................... 193
13.1.1 ORDERPARAMETEREQUATION ........................ 194
13.2 PATTERNS OBTAINED FROM THE 3D SWIFT*HOHENBERG EQUATION . . 196
13.3 THENONDEGENERATEOPO................................ 200
13.4 CONCLUSIONS............................................ 201
13.4.1 TUNABILITY OF A SYSTEM WITH A BROAD GAIN BAND . ..... 201
13.4.2 ANALOGYBETWEEN2DAND3DCASES................. 202
REFERENCES ................................................. 202
14 PATTERNS AND NOISE
.......................................
205
14.1 NOISEINCONDENSATES ................................... 206
14.1.1 SPATIO-TEMPORALNOISESPECTRA..................... 207
14.1.2 NUMERICALRESULTS................................ 210
14.1.3 CONSEQUENCES.................................... 214
14.2 NOISYSTRIPES .......................................... 216
14.2.1 SPATIO-TEMPORALNOISESPECTRA..................... 217
14.2.2 STOCHASTICDRIFTS ................................. 221
14.2.3 CONSEQUENCES.................................... 223
REFERENCES ................................................. 224
INDEX
.........................................................
225
|
any_adam_object | 1 |
author | Staliūnas, Ke̜stutis Sánchez Morcillo, Victor J. |
author_facet | Staliūnas, Ke̜stutis Sánchez Morcillo, Victor J. |
author_role | aut aut |
author_sort | Staliūnas, Ke̜stutis |
author_variant | k s ks m v j s mvj mvjs |
building | Verbundindex |
bvnumber | BV016475426 |
callnumber-first | Q - Science |
callnumber-label | QC476 |
callnumber-raw | QC476.5 |
callnumber-search | QC476.5 |
callnumber-sort | QC 3476.5 |
callnumber-subject | QC - Physics |
classification_rvk | UD 9310 UH 5680 |
classification_tum | PHY 380f |
ctrlnum | (OCoLC)51454592 (DE-599)BVBBV016475426 |
dewey-full | 621.36/6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/6 |
dewey-search | 621.36/6 |
dewey-sort | 3621.36 16 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02172nam a2200553zcb4500</leader><controlfield tag="001">BV016475426</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050517 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030128s2003 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">966200071</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540004343</subfield><subfield code="9">3-540-00434-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51454592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016475426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC476.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/6</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 9310</subfield><subfield code="0">(DE-625)145547:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5680</subfield><subfield code="0">(DE-625)145685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">29</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Staliūnas, Ke̜stutis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transverse patterns in nonlinear optical resonators</subfield><subfield code="c">Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 226 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer tracts in modern physics</subfield><subfield code="v">183</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Física moderna</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lasers</subfield><subfield code="x">Resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical resonance</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optischer Resonator</subfield><subfield code="0">(DE-588)4172678-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Musterbildung</subfield><subfield code="0">(DE-588)4137934-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optischer Resonator</subfield><subfield code="0">(DE-588)4172678-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Musterbildung</subfield><subfield code="0">(DE-588)4137934-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sánchez Morcillo, Victor J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer tracts in modern physics</subfield><subfield code="v">183</subfield><subfield code="w">(DE-604)BV000000153</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010185695&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010185695</subfield></datafield></record></collection> |
id | DE-604.BV016475426 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:10:56Z |
institution | BVB |
isbn | 3540004343 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010185695 |
oclc_num | 51454592 |
open_access_boolean | |
owner | DE-29T DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-11 DE-188 |
owner_facet | DE-29T DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-11 DE-188 |
physical | XIV, 226 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
series | Springer tracts in modern physics |
series2 | Springer tracts in modern physics |
spelling | Staliūnas, Ke̜stutis Verfasser aut Transverse patterns in nonlinear optical resonators Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo Berlin [u.a.] Springer 2003 XIV, 226 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer tracts in modern physics 183 Includes bibliographical references and index. Física moderna larpcal Lasers Resonators Optical resonance Soliton (DE-588)4135213-0 gnd rswk-swf Optischer Resonator (DE-588)4172678-9 gnd rswk-swf Nichtlineare Optik (DE-588)4042096-6 gnd rswk-swf Musterbildung (DE-588)4137934-2 gnd rswk-swf Nichtlineare Optik (DE-588)4042096-6 s Optischer Resonator (DE-588)4172678-9 s Musterbildung (DE-588)4137934-2 s Soliton (DE-588)4135213-0 s DE-604 Sánchez Morcillo, Victor J. Verfasser aut Springer tracts in modern physics 183 (DE-604)BV000000153 183 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010185695&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Staliūnas, Ke̜stutis Sánchez Morcillo, Victor J. Transverse patterns in nonlinear optical resonators Springer tracts in modern physics Física moderna larpcal Lasers Resonators Optical resonance Soliton (DE-588)4135213-0 gnd Optischer Resonator (DE-588)4172678-9 gnd Nichtlineare Optik (DE-588)4042096-6 gnd Musterbildung (DE-588)4137934-2 gnd |
subject_GND | (DE-588)4135213-0 (DE-588)4172678-9 (DE-588)4042096-6 (DE-588)4137934-2 |
title | Transverse patterns in nonlinear optical resonators |
title_auth | Transverse patterns in nonlinear optical resonators |
title_exact_search | Transverse patterns in nonlinear optical resonators |
title_full | Transverse patterns in nonlinear optical resonators Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo |
title_fullStr | Transverse patterns in nonlinear optical resonators Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo |
title_full_unstemmed | Transverse patterns in nonlinear optical resonators Kȩstutis Staliūnas, Victor J. Sánchez-Morcillo |
title_short | Transverse patterns in nonlinear optical resonators |
title_sort | transverse patterns in nonlinear optical resonators |
topic | Física moderna larpcal Lasers Resonators Optical resonance Soliton (DE-588)4135213-0 gnd Optischer Resonator (DE-588)4172678-9 gnd Nichtlineare Optik (DE-588)4042096-6 gnd Musterbildung (DE-588)4137934-2 gnd |
topic_facet | Física moderna Lasers Resonators Optical resonance Soliton Optischer Resonator Nichtlineare Optik Musterbildung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010185695&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000153 |
work_keys_str_mv | AT staliunaskestutis transversepatternsinnonlinearopticalresonators AT sanchezmorcillovictorj transversepatternsinnonlinearopticalresonators |