Cellular proteins and their fatty acids in health and disease:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXII, 460 S. Ill., graph. Darst. |
ISBN: | 3527304371 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV016449268 | ||
003 | DE-604 | ||
005 | 20031021 | ||
007 | t | ||
008 | 030117s2003 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 965945863 |2 DE-101 | |
020 | |a 3527304371 |9 3-527-30437-1 | ||
035 | |a (OCoLC)50432788 | ||
035 | |a (DE-599)BVBBV016449268 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-526 | ||
050 | 0 | |a QP552.F37 | |
082 | 0 | |a 572/.6 |2 22 | |
084 | |a WX 2300 |0 (DE-625)152175:13423 |2 rvk | ||
245 | 1 | 0 | |a Cellular proteins and their fatty acids in health and disease |c Asim K. Duttaroy ... (eds.) |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2003 | |
300 | |a XXII, 460 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Biological Transport | |
650 | 4 | |a Carrier Proteins | |
650 | 4 | |a Fatty Acids | |
650 | 4 | |a Fatty acid-binding proteins | |
650 | 4 | |a Gene Expression | |
650 | 4 | |a Transcription Factors | |
650 | 0 | 7 | |a Zellproteine |0 (DE-588)4138248-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fettsäuren |0 (DE-588)4154233-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zellproteine |0 (DE-588)4138248-1 |D s |
689 | 0 | 1 | |a Fettsäuren |0 (DE-588)4154233-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Duttaroy, Asim K. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010171068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010171068 |
Datensatz im Suchindex
_version_ | 1804129783294984192 |
---|---|
adam_text | n
Contents
Preface V
List of Contributors XIX
Part 1 The Molecular Basis of Protein Lipid Interaction
and Functional Consequences 1
1 Structure Function of CD36 and Evidence for its Role
in Facilitating Membrane Fatty Acid Transport 3
Chris T. Coburn and Nada A. Abumrad
1.1 Introduction 3
1.2 Primary Structure 4
1.3 Ligand Binding Domains 6
1.4 Membrane Localization and Role in Cell Signaling 6
1.5 CD36 Gene Structure and Regulation 8
1.6 CD36 Deficiency 10
1.7 CD36 and Platelet Function 11
1.8 CD36 and Atherosclerosis 12
1.9 CD36 and Phagocytosis 13
1.10 CD36 and Angiogenesis 14
1.11 CD36 and Malaria 14
1.12 CD36 and Fatty Acid Transport IS
1.12.1 CD36 is Identified as a Mediator of FA Uptake IS
1.12.2 CD36, SHR, and Insulin Resistance 17
1.12.3 CD36 Transgenic and Knockout Mice Models 18
1.12.4 CD36 null Mice the Fed Phenotype 18
1.12.5 CD36 null Mice the Fasting Phenotype 22
1.12.6 CD36 and Insulin Responsiveness in the Mouse 23
1.13 Perspectives and Future Directions 24
1.14 References 25
VIII I Contents
2 Role and Function of FATPs in Fatty Acid Uptake 31
Jean E. Schaffer
2.1 Introduction 31
2.2 Identification of Fatty Acid Transporter Proteins 32
2.3 Structure of FATPs 32
2.4 Function of FATPs 34
2.5 Regulation of FATP expression 35
2.6 Significance of FATPs 36
2.7 References 37
3 Function, Expression, and Regulation of Human ABC Transporters 39
Gerd Schmitz and Thomas Langmann
3.1 Introduction 39
3.2 Structural Features of ATP Binding Cassette (ABC) Transporters 40
3.3 Overview of Human ABC Gene Subfamilies 41
3.3.1 The ABCA (ABC1) Subfamily 45
3.3.2 The ABCB (MDR/TAP) Subfamily 46
3.3.3 The ABCC (CFTR/MRP) Subfamily 48
3.3.4 The ABCD (ALD) Subfamily 50
3.3.5 The ABCE (OABP) and ABCF (GCN20) Subfamilies 51
3.3.6 The ABCG (White) Subfamily 52
3.4 Diseases and Phenotypes Caused by ABC Transporters 52
3.4.1 Familial HDL deficiency and ABCA1 52
3.4.2 Retinal Degeneration and ABCA4 (ABCR) 54
3.4.3 Cystic Fibrosis (ABCC7/CFTR) 56
3.4.4 Multidrug Resistance (ABCB1/MDR1, ABCC1/MRP1, ABCG2) 57
3.4.5 Adrenoleukodystrophy (ABCD1/ALD) 58
3.4.6 Sulfonylurea Receptor (ABCC8/SUR) 59
3.5 Function and Regulation of ABC Transporters in Lipid Transport 60
3.5.1 ABCA1 in Macrophage Lipid Transport 61
3.5.2 ABCG1 and Other ABCG members in Sterol Homeostasis 64
3.5.3 ABC Transporters involved in Hepatobiliary Transport 67
3.6 Conclusions and Perspectives 70
3.7 References 70
4 Albumin Receptors Structure and Function 79
Nigel J. Brunskill
4.1 Introduction 79
4.2 The Search for an Albumin Receptor 80
4.2.1 The Endothelium Albumin Relationship: Early Concepts 80
4.2.2 Identification of Receptors for Native
and Modified Albumin in Endothelial Cells 81
4.3 Albumin Receptors in the Kidney 83
4.3.1 Glomerular Handling of Albumin 83
4.3.2 Binding and Uptake of Albumin in the Kidney Proximal Tubule 83
Contents I IX
4.4 Megalin and Cubilin as Proximal Tubule Albumin Receptors 84
4.4.1 Megalin 84
4.4.2 Cubilin 86
4.5 Albumin as a Signaling Molecule
Implications for Albumin Receptor Function 87
4.5.1 LDLR Family as Signaling Receptors 88
4.5.2 Megalin as a Signaling Receptor 89
4.6 Summary 90
4.7 References 90
5 Intracellular Lipid Binding Proteins:
Evolution, Structure, and Ligand Binding 95
Christian Liicke, Luis H. Gutierrez Gonzalez, and James A. Hamilton
5.1 Introduction 95
5.2 The Evolution of Lipid Binding Proteins 95
5.2.1 The Calycin Superfamily 95
5.2.2 The Intracellular Lipid Binding Proteins 96
5.2.3 The Phylogeny of iLBPs 98
5.3 Structural Characteristics of iLBPs 99
5.3.1 The Common Three dimensional Fold 101
5.3.2 The iLBP Subfamilies 103
5.3.2.1 Subfamily I 103
5.3.2.2 Subfamily II 105
5.3.2.3 Subfamily III 106
5.3.2.4 Subfamily IV 106
5.3.3 Dynamic Properties of iLBPs 107
5.3.4 Mutagenesis Studies 108
5.4 Ligand Binding Assays 109
5.4.1 Microcalorimetry 109
5.4.2 The Lipidex Assay 110
5.4.3 Fluorescence based Binding Assays 111
5.4.4 The ADIFAB Assay 111
5.4.4.1 Thermodynamic Analysis 112
5.4.4.2 Kinetic Analysis 112
5.4.5 Lipid Binding Preferences 113
5.5 Concluding Remarks 113
5.6 References 114
6 Fatty Acid Binding Proteins and Fatty Acid Transport 119
Judith Storch and Lindsay McDermott
6.1 Introduction 119
6.2 Equilibrium Binding of Fatty Acids to FABPs 119
6.3 In vitro Fatty Acid Transfer Properties of FABPs 122
6.4 Transfection Studies of FABP Function 125
6.5 Cellular Fatty Acid Transport via FABP Protein Interactions 126
X I Contents
6.6 Insights into FABP Function from Null Mice 128
6.7 Perspectives 130
6.8 References 131
7 Structure and Function of SCP x/SCP 2 335
Udo Seedorf
7.1 Introduction 135
7.2 The SCP 2 Gene Family 136
7.3 Structure of SCP 2 139
7.4 Role of SCP 2/SCP x in Peroxisomal Metabolism 142
7.5 SCP 2/SCP x Deficiency Affects the Activity
of the Peroxisome Proliferator Activated Receptor PPARa 143
7.6 Impact of SCP 2/SCP x on Cholesterol Metabolism 345
7.7 Acknowledgements 147
7.8 References 347
8 Structure, Function, and Phylogeny of Acyl CoA Binding Protein 151
Susanne Mandrup, Nils J. Fcergeman, and Jens Knudsen
8.1 Introduction 151
8.2 The ACBP Family 352
8.3 ACBP Structure and Ligand Binding Specificity 356
8.4 Regulation of ACBP Expression 157
8.4.1 Genomic Organization in Mammals 357
8.4.2 Expression Pattern in Mammals 358
8.4.3 Transcriptional Regulation of the Mammalian ACBP Gene 359
8.5 Expression Profile in Other Eukaryotes 360
8.6 Subcellular Localization 363
8.7 Regulation of Long chain Acyl CoA Concentrations in vivo 161
8.8 Functions of ACBP 363
8.8.1 Clues obtained from in vitro Studies 363
8.8.2 In vivo Functions in Mammals 365
8.9 Acyl CoA esters, ACBP, and PPARs 365
8.10 ACBP in African trypanosomes {T. brucei) 166
8.11 Functions, and Lessons from Yeast 366
8.12 Conclusions and Future Directions 367
8.13 References 368
9 Structure and Function of PPARs and their Molecular Recognition
of Fatty Acids 173
Colin N.A. Palmer
9.1 PPARs as Nuclear Receptors 373
9.2 DNA Binding 374
9.3 PPARs as Fatty Acid and Drug Binding Receptors 376
9.4 Species Differences in Pharmacology 179
9.5 Co activator/Co repressor Interactions ISO
Contents XI
9.6 Cross talk with Inflammatory Signaling 182
9.7 PPARs as Phosphoproteins 183
9.8 References 185
10 Structure and Function of Retinoid Receptors RAR and RXR 191
Alexander Mata de Urquiza and Thomas Perlmann
10.1 Retinoids in Development 191
10.2 Retinoid Receptors Transduce Retinoic Acid Signals 193
10.3 Retinoid Receptors Belong to the Nuclear Hormone
Receptor Family 194
10.4 Nuclear Receptors Share a Common Structure 194
10.5 The LBD and Ligand dependent Transactivation 196
10.6 Cross talk 198
10.7 Co activators 198
10.8 Co repressors 199
10.9 Nuclear Receptors from an Evolutionary Perspective 201
10.10 Fatty acids as Endogenous Ligands for RXR 201
10.11 Perspectives 202
10.12 Acknowledgements 203
10.13 References 203
11 Liver X Receptors (LXRs)
Important Regulators of Lipid Homeostasis 209
Lent K. Juvet and Hilde I. Nebb
11.1 Introduction 209
11.2 Nuclear Hormone Receptors 209
11.3 The Liver X Receptors, LXRa and LXR/9 210
11.4 The Cholesterol Sensor LXR 211
11.5 Interplay between Cholesterol and Fatty Acid Metabolism 214
11.5.1 LXR and SREBP lc Activation:
a New Link between Cholesterol and Fatty Acid Regulation 214
11.5.2 Direct Regulation of Target Genes by LXRs in Lipid Metabolism 215
11.5.3 LXRs as Insulin Sensors in Liver 216
11.5.4 Fatty Acid Regulation of LXR 217
11.5.5 LXRs in Adipose Tissue 218
11.6 Summary 219
11.7 Acknowledgements 219
11.8 References 220
12 Acyl CoA Ligands of HNF 4« and HNF 4n/PPAR« Interplay 225
Rachel Hertz and Jacob Bar Tana
12.1 Transcriptional Activation by HNF 4a 225
12.2 Fatty Acyl CoA Ligands of HNF 4a 226
12.3 Xenobiotic Ligands of HNF 4a 230
12.4 HNF 4a and its Ligands in Health and Disease 232
XII I Contents
12.4.1 Blood Lipids 232
12.4.2 MODY 1 232
12.4.3 Blood Coagulation 233
12.5 Liver HNF 4a/PPARa Interplay in Rodents and Humans 233
12.6 References 236
Part 2 Role for Proteins in Cellular Homeostasis 239
13 Fatty Acid Binding Proteins and their Roles
in Transport of Long chain Polyunsaturated Fatty Acids
across the Feto placental Unit 241
Asim K. Duttaroy
13.1 Introduction 241
13.2 Fatty Acid Uptake in the Feto placental Unit 242
13.3 Identification of Membrane associated Fatty Acid
Binding Protein in Human Placenta 243
13.4 Identification and Location of FAT/CD36 and FATP
in Human Placental Membranes 246
13.5 Presence of Cytoplasmic Fatty Acid Binding Proteins (FABPs)
in Human Placenta 247
13.6 Presence of Nuclear Transcription Factors that Bind Fatty Acids
in Human Placenta: Interaction Between Fatty Acid
Binding Proteins and PPARy 248
137 References 250
14 Fatty Acid Binding Proteins of the Brain 253
Yuji Owada and Hisatake Kondo
14.1 Introduction 253
14.2 Expression of FABPs in Developing Rat Brain 254
14.2.1 Localization of H FABP 254
U.2.2 Localization of E FABP 258
14.2.3 Localization of B FABP 261
14.3 Significance of FABP Expression in Brain 261
14.4 Perspective 263
14.5 Acknowledgements 263
14.6 References 264
15 Cross talk between Intracellular Lipid Binding Proteins
and Ligand Activated Nuclear Receptors
A Signaling Pathway for Fatty Acids 267
Christian Wolfrum and Friedrich Spener
15.1 Introduction 267
15.2 Fatty Acid Activated Nuclear Receptors 268
15.3 Intracellular Lipid Binding Proteins 269
Contents I XIII
15.4 Regulation of Fatty Acid Activated Nuclear Receptor Activity by
iLBPs 270
15.5 L FABP 271
15.6 A FABP and E FABP 274
15.7 CRABP II 276
15.8 Other Members of the FABP Family 277
15.9 Mechanism of iLBP Import into the Nucleus 278
15.10 Conclusions and Perspectives 279
15.11 References 281
16 Arachidonic Acid Binding Proteins in Human Neutrophils 285
Claus Kerkhoffand OlofRadmark
16.1 Cellular Functions of Arachidonic Acid 285
16.2 The Two Myeloid related Proteins S100A8 and S100A9 285
16.2.1 S100A8 and S100A9 Belong to the S100 Family 285
16.2.2 S100A8 and S100A9 Expression is Primarily Restricted
to Cells of Myeloid Lineage 287
16.2.3 S100A8/A9 Protein Complexes Bind Polyunsaturated Fatty Acids 289
16.2.4 Translocation of S100A8 and S100A9 is Accompanied
with Arachidonic Acid Transport 291
16.3 Putative Intracellular Functions of S100A8/A9 292
16.3.1 5 Lipoxygenase (5 LO) and 5 Lipoxygenase Activating Protein
(FLAP) 292
16.3.2 Cyclooxygenases (COX 1 and COX 2) 294
16.3.3 NADPH Oxidase Complex 295
16.4 Extracellular Role of the S100A8/A9 Arachidonic Acid Complex 297
16.4.1 Transcellular Arachidonic Acid Metabolism 297
16.4.2 Cellular Uptake of Long chain Fatty Acids (LCFAs) 298
16.4.3 Participation of S100A8/A9 in the Arachidonic Acid Uptake 299
16.5 Conclusion and Future Perspectives 302
16.6 References 303
17 PPARs, Cell Differentiation, and Glucose Homeostasis 309
Stephen R. Farmer
17.1 Introduction 309
17.2 Regulation of PPAR Activity 309
17.3 PPARs and Differentiation 311
17.3.1 PPARy 311
17.3.2 PPARy and Adipogenesis 312
17.3.3 PPARy and Transcriptional Control of the Pleiotropic Functions
of the Adipocyte 315
17 A PPARa 316
17.5 PPAR 5 317
17.6 PPARs and Control of Glucose Homeostasis:
Therapies for Metabolic Syndrome and Type 2 Diabetes 318
XIV I Contents
V.G.I PPARy 318
17.6.2 PPARa 321
17.7 Conclusion 322
17.8 Acknowledgements 323
17.9 References 323
18 Role of FABP in Cellular Phospholipid Metabolism 327
Chris A. Jolly and Eric J. Murphy
18.1 Fatty Acid Targeting 327
18.2 Phospholipid Metabolism 328
18.2.1 Diacyl Phospholipid Classes 329
18.2.2 Potential Mechanisms for Diacyl Phospholipid Classes 331
18.2.3 Plasmalogen Classes 331
18.2.4 Potential Mechanisms for Plasmalogen Classes 333
18.3 Neutral Iipid Mass 334
18.4 Cellular Phospholipid Composition 334
18.5 Phospholipid Acyl Chain Composition 335
18.5.1 Potential Mechanisms for Fatty Acyl Chain Alterations 336
18.6 Phosphatidic Acid Biosynthesis 337
18.6.1 FABP Increases Phosphatidic Acid Biosynthesis 337
18.6.2 L FABP Conformers and Phosphatidic Acid Biosynthesis 338
18.6.3 Potential Mechanisms for Stimulation of Phosphatidic Acid
Biosynthesis 338
18.6.4 Biological Significance 339
18.7 Conclusions and Perspectives 340
18.8 References 340
19 Membrane associated Fatty Acid Binding Proteins
Regulate Fatty Acid Uptake by Cardiac and Skeletal Muscle 343
Jan F. C. Glatz, Joost J. F. P. Luiken, Ger J. van der Vusse,
and Arend Bonen
19.1 Introduction 343
19.2 Molecular Mechanism of Muscular Fatty Acid Uptake 344
19.2.1 Passive Diffusional and Protein mediated Fatty Acid Uptake 344
19.2.2 Membrane associated Fatty Acid Binding Proteins 346
19.2.3 Putative Mechanism of Cellular Fatty Acid Uptake 347
19.3 Expression of FABPs in Heart and Skeletal Muscles Compared 348
19.4 Regulation of Muscular Fatty Acid Uptake 350
19.4.1 Acute Changes in Muscle Fatty Acid Utilization
and Membrane FABPs 350
19.4.2 Signaling Pathway for FAT/CD36 Translocation
to and from the Sarcolemma 351
19.4.3 Chronic Changes in Muscle Fatty Acid Utilization
and Membrane FABPs 352
Contents I XV
19.5 Concerted Action of the Proteins Involved
in Muscle Fatty Acid Uptake 353
19.6 Alterations in Fatty Acid Uptake and Membrane FABPs
in Disease 354
19.7 Concluding Remarks 355
19.8 Acknowledgements 355
19.9 References 356
20 Intestinal Fat Absorption: Roles of Intracellular Lipid Binding
Proteins and Peroxisome Proliferator Activated Receptors 359
Isabelle Niot and Philippe Besnard
20.1 Introduction 359
20.2 Intestinal LCFA Absorption: A Complex Phenomenon 360
20.2.1 Can LCFA Uptake be a Rate limiting Step
for Intestinal Fat Absorption? 360
20.2.2 Why do Enterocytes Express Different Membrane LBP? 363
20.2.2.1 FABPpm/mAspAT: A Protein in Search of a Function 364
20.2.2.2 FATP4: A Plasma Membrane associated ACS like Protein? 365
20.2.2.3 Caveolin 1: An LBP and a Caveolae Marker 365
20.2.2.4 FAT/CD36: An Involvement in a Vesicular Trafficking of LCFA3 366
20.2.3 Do the Different Soluble FABPs Exert the Same Function? 368
20.2.4 ACBP: A Universal Long chain Acyl CoA Transporter 372
20.2.5 An Integrative Working Model 372
20.3 Intestinal LCFA Absorption: A Phenomenon Putatively Adaptable
to the Lipid Content of the Diet 374
20.3.1 PPAR and Coordinatd LBP Regulation 374
20.3.2 PPAR/?/ 5: A Nuclear Receptor Involved in the Regulation
of Intestinal Absorptive Area 376
20.4 General Conclusion 377
20.5 References 378
21 Fatty Acid Binding Proteins as Metabolic Regulators 383
J.M. Stewart
21.1 Introduction 383
21.2 Established Interactions between Carbohydrate
and Fatty Acid based Energy Production 384
21.3 The Involvement of FABP in Metabolism: Working Hypothesis 384
21.4 Criteria for Physiological Relevance of Metabolite Modulation
of Fatty Acid Binding to FABP 385
21.4.1 Mammalian Liver FABP 386
21.4.2 Mammalian Heart/Muscle FABP 387
21.5 Potential of Formation of Schiff Bases:
Non enzymatic Glycation of FABPs 388
XVI I Contents
21.6 Theoretical Effects and Implications of Reciprocal Cross talk:
How much Fatty Acid Would be Available to Interact
with Hexokinase? 389
21.7 Difference in Binding of Fatty Acids and Modulation
between Different Types of FABP 391
21.8 Where Else to Look: Other Enzymes that are Influenced
by Fatty Acids 391
21.9 Summary 392
21.10 Acknowledgements 393
21.11 References 394
22 Role of Lipid Binding Proteins in Disease 397
Aline Meirhaeghe and Philippe Amouyel
22.1 Polymorphism in FATP1 Gene and Triglyceride Metabolism 397
22.1.1 Fatty Acid Metabolism 397
22.1.2 FATP1 Polymorphisms 398
22.1.3 FABP2 Polymorphisms 399
22.2 References 400
23 PPARs in Atherosclerosis 401
Jorge Plutzky
23.1 Atherosclerosis 401
23.1.1 Introduction 401
23.1.2 Atherosclerosis as a Clinical Syndrome 402
23.1.3 Cellular Constituents of Atherosclerosis 403
23.1.4 Atherosclerosis as an Inflammatory Disorder 404
23.1.5 Atherosclerosis as a Metabolic Disorder 404
23.2 PPAR in the Vasculature 405
23.2.1 PPARs in Vascular Biology and Atherosclerosis 405
23.2.2 Examining Evidence for PPAR in Vascular Responses 406
23.3 PPARy in Vascular Biology and Atherosclerosis 407
23.3.1 In vitro Evidence 407
23.3.2 In vivo Evidence 408
23.4 PPARa in Vascular Biology and Atherosclerosis 409
23.4.1 In vitro Evidence 409
23.4.2 In vivo Evidence 411
23.5 PPAR 5 in Vascular Biology and Atherosclerosis 413
23.6 Conclusion 413
23.7 References 414
Contents I XVII
24 PPARs: Nuclear Hormone Receptors Involved
in the Control of Inflammation 419
Liliane Michalik, Nguan Soon Tan, Walter Wahli,
and Beatrice Desvergne
24.1 Introduction 419
24.2 PPAR Expression Profiles and Modulation by Cytokines 420
24.3 Fatty Acids and their Metabolites are PPAR Ligands 421
24.4 PPARs and the Control of the Inflammatory Response 423
24.4.1 Anti inflammatory Properties of PPARa 423
24.4.2 PPAR/? and the Keratinocyte Response to Inflammation 425
24.4.3 PPARy is Involved in the Control of Inflammation 427
24.5 Are PPARs Good Targets for the Treatment
of Inflammatory Disorders? 428
24.5.1 PPARs in Skin Inflammatory Disorders 428
24.5.2 PPARs and the Progression of Atherosclerosis 428
24.5.3 PPARy Regulates Intestinal Inflammation 431
24.6 Conclusion 431
24.7 Acknowledgements 432
24.8 References 433
25 PPARs and Cancer 437
J. H. Gill and Ruth A. Roberts
25.1 Introduction 437
25.2 The PPAR Family 437
25.3 PPARa 438
25.3.1 Expression and Activation 438
25.3.2 PPARa and Cancer 439
25.3.3 Species Differences 439
25.3.4 PPARa as a Therapeutic Target? 440
25.4 PPARy 441
25.4.1 Expression and Activation 441
25.4.2 PPARy and Cancer 442
25.4.3 PPARy as a Therapeutic Target? 442
25.5 PPAR/? 443
25.5.1 Expression and Activation 443
25.5.2 PPAR^ and Cancer 443
25.5.3 PPAR/? as a Therapeutic Target? 444
25.6 Future Directions 444
25.7 References 445
Subject Index 449
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV016449268 |
callnumber-first | Q - Science |
callnumber-label | QP552 |
callnumber-raw | QP552.F37 |
callnumber-search | QP552.F37 |
callnumber-sort | QP 3552 F37 |
callnumber-subject | QP - Physiology |
classification_rvk | WX 2300 |
ctrlnum | (OCoLC)50432788 (DE-599)BVBBV016449268 |
dewey-full | 572/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572/.6 |
dewey-search | 572/.6 |
dewey-sort | 3572 16 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01657nam a2200469 c 4500</leader><controlfield tag="001">BV016449268</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031021 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030117s2003 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">965945863</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527304371</subfield><subfield code="9">3-527-30437-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50432788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016449268</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP552.F37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 2300</subfield><subfield code="0">(DE-625)152175:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cellular proteins and their fatty acids in health and disease</subfield><subfield code="c">Asim K. Duttaroy ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 460 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological Transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carrier Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty Acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty acid-binding proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene Expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcription Factors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellproteine</subfield><subfield code="0">(DE-588)4138248-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fettsäuren</subfield><subfield code="0">(DE-588)4154233-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zellproteine</subfield><subfield code="0">(DE-588)4138248-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fettsäuren</subfield><subfield code="0">(DE-588)4154233-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duttaroy, Asim K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010171068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010171068</subfield></datafield></record></collection> |
id | DE-604.BV016449268 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:10:37Z |
institution | BVB |
isbn | 3527304371 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010171068 |
oclc_num | 50432788 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-526 |
owner_facet | DE-355 DE-BY-UBR DE-526 |
physical | XXII, 460 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Cellular proteins and their fatty acids in health and disease Asim K. Duttaroy ... (eds.) Weinheim Wiley-VCH 2003 XXII, 460 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Biological Transport Carrier Proteins Fatty Acids Fatty acid-binding proteins Gene Expression Transcription Factors Zellproteine (DE-588)4138248-1 gnd rswk-swf Fettsäuren (DE-588)4154233-2 gnd rswk-swf Zellproteine (DE-588)4138248-1 s Fettsäuren (DE-588)4154233-2 s DE-604 Duttaroy, Asim K. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010171068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cellular proteins and their fatty acids in health and disease Biological Transport Carrier Proteins Fatty Acids Fatty acid-binding proteins Gene Expression Transcription Factors Zellproteine (DE-588)4138248-1 gnd Fettsäuren (DE-588)4154233-2 gnd |
subject_GND | (DE-588)4138248-1 (DE-588)4154233-2 |
title | Cellular proteins and their fatty acids in health and disease |
title_auth | Cellular proteins and their fatty acids in health and disease |
title_exact_search | Cellular proteins and their fatty acids in health and disease |
title_full | Cellular proteins and their fatty acids in health and disease Asim K. Duttaroy ... (eds.) |
title_fullStr | Cellular proteins and their fatty acids in health and disease Asim K. Duttaroy ... (eds.) |
title_full_unstemmed | Cellular proteins and their fatty acids in health and disease Asim K. Duttaroy ... (eds.) |
title_short | Cellular proteins and their fatty acids in health and disease |
title_sort | cellular proteins and their fatty acids in health and disease |
topic | Biological Transport Carrier Proteins Fatty Acids Fatty acid-binding proteins Gene Expression Transcription Factors Zellproteine (DE-588)4138248-1 gnd Fettsäuren (DE-588)4154233-2 gnd |
topic_facet | Biological Transport Carrier Proteins Fatty Acids Fatty acid-binding proteins Gene Expression Transcription Factors Zellproteine Fettsäuren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010171068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT duttaroyasimk cellularproteinsandtheirfattyacidsinhealthanddisease |