Theory and applications of viscous fluid flows:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Schriftenreihe: | Physics and astronomy online library
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XV, 488 S. graph. Darst. |
ISBN: | 3540440135 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV015772111 | ||
003 | DE-604 | ||
005 | 20040419 | ||
007 | t | ||
008 | 021217s2004 xxud||| |||| 00||| eng d | ||
016 | 7 | |a 968695205 |2 DE-101 | |
020 | |a 3540440135 |9 3-540-44013-5 | ||
035 | |a (OCoLC)51222090 | ||
035 | |a (DE-599)BVBBV015772111 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-91G |a DE-M49 |a DE-634 |a DE-11 | ||
050 | 0 | |a QA929 | |
082 | 0 | |a 532/.0533 |2 21 | |
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a PHY 216f |2 stub | ||
100 | 1 | |a Zeytounian, Radyadour Kh. |d 1928- |e Verfasser |0 (DE-588)112097952 |4 aut | |
245 | 1 | 0 | |a Theory and applications of viscous fluid flows |c Radyadour Kh. Zeytounian |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XV, 488 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics and astronomy online library | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Fluid dynamics | |
650 | 4 | |a Viscous flow | |
650 | 0 | 7 | |a Viskose Strömung |0 (DE-588)4226965-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Viskose Strömung |0 (DE-588)4226965-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010125132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010125132 |
Datensatz im Suchindex
_version_ | 1804129722165100544 |
---|---|
adam_text | CONTENTS INTRODUCTION ..................................................
1 1 NAVIER*STOKES*FOURIEREXACTMODEL ...................... 11 1.1
THETRANSPORTTHEOREM................................. 11 1.2
THEEQUATIONOFCONTINUITY ............................. 12 1.3
THECAUCHYEQUATIONOFMOTION ......................... 12 1.4
THECONSTITUTIVEEQUATIONSOFAVISCOUSFLUID............. 13 1.4.1
STOKES*SFOURPOSTULATES:STOKESIANFLUID ........... 14 1.4.2
CLASSICALLINEARVISCOSITYTHEORY:NEWTONIANFLUID.. 15 1.5
THEENERGYEQUATIONANDFOURIER*SLAW .................. 17 1.5.1
THETOTALENERGYEQUATION....................... 17 1.5.2
HEATCONDUCTIONANDFOURIER*SLAW................ 18 1.6
THENAVIER*STOKES*FOURIEREQUATIONS..................... 19 1.6.1
THENSFEQUATIONFORANIDEALGAS WHEN C V AND C P
ARECONSTANTS.................... 20 1.6.2
DIMENSIONLESSNSFEQUATIONS..................... 21 1.6.3
REDUCEDDIMENSIONLESSPARAMETERS ................ 22 1.7
CONDITIONSFORUNSTEADY-STATENSFEQUATIONS............. 25 1.7.1
THEPROBLEMOFINITIALCONDITIONS ................. 26 1.7.2
BOUNDARYCONDITIONS............................. 28 2
SOMEFEATURESANDVARIOUSFORMSOFNSFEQUATIONS ..... 35 2.1
ISENTROPICITY,POLYTROPICGAS,BAROTROPICMOTION,
ANDINCOMPRESSIBILITY................................... 35 2.1.1
NSEQUATIONS ................................... 35 2.1.2
NAVIERSYSTEM................................... 36 2.1.3
NAVIERSYSTEMWITHTIME-DEPENDENTDENSITY ....... 37 2.1.4 FOURIEREQUATION
................................ 38 2.2
SOMEINTERESTINGISSUESINNAVIERINCOMPRESSIBLEFLUIDFLOW. 39 2.2.1
THEPRESSUREPOISSONEQUATION.................... 41 2.2.2 * N * * N AND U
N * * N FORMULATIONS............... 42 2.2.3
THEOMNIPOTENCEOFTHEINCOMPRESSIBILITYCONSTRAINT 43 2.2.4
AFIRSTSTATEMENTOFAWELL-POSEDINITIAL BOUNDARY-VALUEPROBLEM(IBVP)
FORNAVIEREQUATIONS............................. 46 X CONTENTS 2.2.5
CAUCHYFORMULAFORVORTICITY...................... 47 2.2.6
THENAVIEREQUATIONSASANEVOLUTIONARYEQUATION FORPERTURBATIONS
................................ 48 2.3 FROMNSFTOHYPOSONIC
ANDOBERBECK*BOUSSINESQ(OB)EQUATIONS ................ 50 2.3.1
MODELEQUATIONSFORHYPOSONICFLUIDFLOWS......... 50 2.3.2
THEOBERBECK*BOUSSINESQMODELEQUATIONS......... 52 3 SOMESIMPLEEXAMPLES
OFNAVIER,NSANDNSFVISCOUSFLUIDFLOWS .............. 57 3.1
PLANEPOISEUILLEFLOWANDTHEORR*SOMMERFELDEQUATION.... 57 3.1.1
THEORR*SOMMERFELDEQUATION.................... 58 3.1.2
ADOUBLE-SCALETECHNIQUE FORRESOLVINGTHEORR*SOMMERFELDEQUATION......... 60
3.2 STEADYFLOWTHROUGHANARBITRARYCYLINDERUNDERPRESSURE. 61 3.2.1
THECASEOFACIRCULARCYLINDER................... 62 3.2.2
THECASEOFANANNULARREGION BETWEENCONCENTRICCYLINDERS.....................
63 3.2.3 THECASEOFACYLINDEROFARBITRARYSECTION......... 63 3.3
STEADY-STATECOUETTEFLOWBETWEENCYLINDERS INRELATIVEMOTION
..................................... 64 3.3.1
THECLASSICTAYLORPROBLEM....................... 65 3.3.2
THETAYLORNUMBER.............................. 66 3.4
THEB´ENARDLINEARPROBLEMANDTHERMALINSTABILITY ....... 68 3.5
THEB´ENARDLINEARPROBLEM
WITHAFREESURFACEANDTHEMARANGONIEFFECT.............. 71 3.5.1
THECASEWHENTHENEUTRALSTATEISSTATIONARY...... 73 3.5.2
FREE-SURFACEDEFORMATION......................... 75 3.6
FLOWDUETOAROTATINGDISC............................. 75 3.6.1
SMALLVALUESOF * ................................ 77 3.6.2 LARGEVALUESOF
* ................................ 77 3.6.3 JOINING(MATCHING)
.............................. 78 3.7
ONE-DIMENSIONALUNSTEADY-STATENSFEQUATIONS
ANDTHERAYLEIGHPROBLEM............................... 78 3.7.1 SMALL M 2
SOLUTION*CLOSETOTHEFLATPLATE
BUTFARFROMTHEINITIALTIME...................... 81 3.7.2 SMALL M 2
SOLUTION*FARFROMAFLATPLATE.......... 83 3.7.3 SMALL M 2
SOLUTION*CLOSETOTHEINITIALTIME....... 86 3.8
COMPLEMENTARYREMARKS................................ 87 4
THELIMITOFVERYLARGEREYNOLDSNUMBERS .............. 89 4.1
INTRODUCTION........................................... 89 4.2
CLASSICALHIERARCHICALBOUNDARY-LAYERCONCEPT
ANDREGULARCOUPLING................................... 93 CONTENTS XI
4.2.1 A2-DSTEADY-STATENAVIEREQUATION
FORTHESTREAMFUNCTION.......................... 93 4.2.2
ALOCALFORMOFTHE2-DSTEADY-STATE
NAVIEREQUATIONFORTHESTREAMFUNCTION........... 94 4.2.3
ALARGEREYNOLDSNUMBERAND*PRINCIPAL*
AND*LOCAL*APPROXIMATIONS...................... 94 4.2.4
MATCHING....................................... 96 4.2.5
THEPRANDTL*BLASIUSANDBLASIUSBLPROBLEMS ...... 97 4.3 ASYMPTOTICSTRUCTURE
OFUNSTEADY-STATENSFEQUATIONSATRE * 1 ..............103 4.3.1
FOURSIGNIFICANTDEGENERACIESOFNSFEQUATIONS .....105 4.3.2
FORMULATIONOFASIMPLIFIEDINITIALBOUNDARY-VALUE
PROBLEMFORTHENSFFULLUNSTEADY-STATEEQUATIONS .108 4.3.3
VARIOUSFACETSOFLARGEREYNOLDSNUMBER
UNSTEADY-STATEFLOW.............................109 4.3.4
THETWOADJUSTMENTPROBLEMS....................114 4.4
THETRIPLE-DECKCONCEPTANDSINGULARINTERACTIVECOUPLING .118 4.4.1
THETRIPLE-DECKTHEORY IN2-DSTEADY-STATENAVIERFLOW...................120
4.5 COMPLEMENTARYREMARKS................................126 4.5.1
THREE-DIMENSIONALBOUNDARY-LAYEREQUATIONS.......130 4.5.2
UNSTEADY-STATEINCOMPRESSIBLE
BOUNDARY-LAYERFORMULATION......................137 4.5.3
THEINVISCIDLIMIT:SOMEMATHEMATICALRESULTS .....140 4.5.4
RIGOROUSRESULTSFORTHEBOUNDARY-LAYERTHEORY ....144 5
THELIMITOFVERYLOWREYNOLDSNUMBERS ............... 145 5.1
LARGEVISCOSITYLIMITSANDSTOKESANDOSEENEQUATIONS.....145 5.1.1
STEADY-STATESTOKESEQUATION .....................145 5.1.2
UNSTEADY-STATEOSEENEQUATION ...................146 5.1.3
UNSTEADY-STATESTOKES ANDSTEADY-STATEOSEENEQUATIONS.................147
5.1.4 UNSTEADY-STATEMATCHEDSTOKES*OSEENSOLUTION ATRE *
1FORTHEFLOWPASTASPHERE..............147 5.2 LOWREYNOLDSNUMBERFLOW
DUETOANIMPULSIVELYSTARTEDCIRCULARCYLINDER............149 5.2.1
FORMULATIONOFTHESTEADY-STATEPROBLEM...........150 5.2.2
THEUNSTEADY-STATEPROBLEM......................152 5.3 COMPRESSIBLEFLOW
.....................................153 5.3.1 THESTOKESLIMITINGCASE
ANDSTEADY-STATECOMPRESSIBLESTOKESEQUATIONS ....154 5.3.2
THEOSEENLIMITINGCASE ANDSTEADY-STATECOMPRESSIBLEOSEENEQUATIONS.....155
5.4 FILMFLOWONAROTATINGDISC:
ASYMPTOTICANALYSISFORSMALLRE........................158 XII CONTENTS
5.4.1 SOLUTIONFORSMALLRE * 1:LONG-TIMESCALEANALYSIS 159 5.4.2
SOLUTIONFORSMALLRE * 1:SHORT-TIMESCALEANALYSIS 160 5.5
SOMERIGOROUSMATHEMATICALRESULTS.....................164 6
INCOMPRESSIBLELIMIT:LOWMACHNUMBERASYMPTOTICS ... 165 6.1
INTRODUCTION...........................................165 6.2
NAVIER*FOURIERASYMPTOTICMODEL........................168 6.2.1
THEINITIALIZATIONPROBLEMANDEQUATIONS
OFACOUSTICS.....................................171 6.2.2
THEFOURIERMODEL...............................175 6.2.3
INFLUENCEOFWEAKCOMPRESSIBILITY: SECOND-ORDEREQUATIONSFOR U * AND * *
..............178 6.2.4
CONCLUDINGREMARKS.............................179 6.3
COMPRESSIBLELOWMACHNUMBERMODELS..................181 6.3.1
HYPOSONICMODELFORFLOWINABOUNDEDCAVITY.....181 6.3.2
LARGECHANNELASPECTRATIO,LOWMACHNUMBER,
COMPRESSIBLEFLOW...............................183 6.4
VISCOUSNONADIABATICBOUSSINESQEQUATIONS ...............184 6.4.1
THEBASICSTATE .................................184 6.4.2
ASYMPTOTICDERIVATION OFVISCOUS,NONADIABATICBOUSSINESQEQUATIONS......186
6.5 SOMECOMMENTS.......................................187 7
SOMEVISCOUSFLUIDMOTIONSANDPROBLEMS ............... 191 7.1
OSCILLATORYVISCOUSINCOMPRESSIBLEFLOW...................191 7.1.1
ACOUSTICSTREAMINGEFFECT ........................191 7.1.2
STUDYOFTHESTEADY-STATESTREAMINGPHENOMENON...196 7.1.3
THEROLEOFPARAMETERS * RE=RE S ANDRE /* = * 2 .198 7.1.4
OTHEREXAMPLESOFVISCOUSOSCILLATORYFLOW ........202 7.2
UNSTEADY-STATEVISCOUS,INCOMPRESSIBLEFLOW
PASTAROTATINGANDTRANSLATINGCYLINDER .................203 7.2.1
FORMULATIONOFTHEGOVERNINGPROBLEM .............203 7.2.2 METHODOFSOLUTION
..............................204 7.2.3
DETERMINATIONOFTHEINITIALFLOW..................205 7.2.4
RESULTSOFCALCULATIONSANDCOMPARISONWITHTHE
VISUALIZATIONOFCOUTANCEAUANDM´ENARD(1985).....206 7.2.5
ASHORTCOMMENT...............................207 7.3
EKMANANDSTEWARTSONLAYERS...........................208 7.3.1
GENERALEQUATIONSANDBOUNDARYCONDITIONS........210 7.3.2 THEEKMANLAYER
...............................211 7.3.3
THESTEWARTSONLAYER............................211 7.3.4
THEINNER,OUTER,ANDUPPERREGIONS..............213 7.3.5
COMMENTS......................................214 7.4
LOWREYNOLDSNUMBERFLOWS:FURTHERINVESTIGATIONS........215 CONTENTS XIII
7.4.1 UNSTEADY-STATEADJUSTMENTTOTHESTOKESMODEL
INABOUNDEDDEFORMABLECAVITY * ( T )..............215 7.4.2
ONTHEWAKEINLOWREYNOLDSNUMBERFLOW........218 7.4.3
OSCILLATORYDISTURBANCESASADMISSIBLESOLUTIONS
ANDTHEIRPOSSIBLERELATIONSHIP
TOTHEVONKARMANSHEETPHENOMENON.............220 7.4.4
SOMEREFERENCES.................................223 7.5
THEB´ENARD*MARANGONIPROBLEM:ANALTERNATIVE...........224 7.5.1
DIMENSIONLESSDOMINANTEQUATIONS ................226 7.5.2
DIMENSIONLESSDOMINANTBOUNDARYCONDITIONS ......227 7.5.3
THERAYLEIGH*B´ENARD(RB)THERMALSHALLOW
CONVECTIONPROBLEM..............................229 7.5.4
THEB´ENARD*MARANGONI(BM)PROBLEM.............231 7.6
SOMEASPECTSOFNONADIABATICVISCOUSATMOSPHERICFLOW...233 7.6.1
THEL-SSHVEQUATIONS...........................233 7.6.2
THETANGENTHV(THV)EQUATIONS ................238 7.6.3
THEQUASI-GEOSTROPHICMODEL.....................240 7.7
MISCELLANEOUSTOPICS....................................246 7.7.1
THEENTRAINMENTOFAVISCOUSFLUID
INATWO-DIMENSIONALCAVITY......................246 7.7.2
UNSTEADY-STATEBOUNDARYLAYERS..................253 7.7.3
VARIOUSTOPICSRELATEDTOBOUNDARY-LAYEREQUATIONS 258 7.7.4
MOREONTHETRIPLE-DECKTHEORY...................260 7.7.5
SOMEPROBLEMSRELATEDTONAVIEREQUATIONS
FORANINCOMPRESSIBLEVISCOUSFLUID................266 7.7.6
LOWANDLARGEPRANDTLNUMBERFLOW..............272 7.7.7
AFINALCOMMENT.................................275 8
SOMEASPECTSOFAMATHEMATICALLYRIGOROUSTHEORY ...... 277 8.1
CLASSICAL,WEAK,ANDSTRONGSOLUTIONS
OFTHENAVIEREQUATIONS.................................278 8.2
GALERKINAPPROXIMATIONSANDWEAKSOLUTIONS
OFTHENAVIEREQUATIONS.................................283 8.2.1
SOMECOMMENTSANDBIBLIOGRAPHICALNOTES .........287 8.3
RIGOROUSMATHEMATICALRESULTSFORNAVIERINCOMPRESSIBLE ANDVISCOUSFLUIDFLOWS
................................289 8.3.1
NAVIEREQUATIONSINANUNBOUNDEDDOMAIN.........295 8.3.2
SOMERECENTRIGOROUSRESULTS.....................298 8.4
RIGOROUSMATHEMATICALRESULTS
FORCOMPRESSIBLEANDVISCOUSFLUIDFLOWS.................300 8.4.1
THEINCOMPRESSIBLELIMIT.........................305 8.5
SOMECONCLUDINGREMARKS ..............................307 XIV CONTENTS 9
LINEARANDNONLINEARSTABILITYOFFLUIDMOTION ........... 311 9.1
SOMEASPECTSOFTHETHEORYOFTHESTABILITYOFFLUIDMOTION.311 9.1.1
LINEAR,WEAKLYNONLINEAR,NONLINEAR, ANDHYDRODYNAMICSTABILITY
......................312 9.1.2
REYNOLDS*ORR,ENERGY,SUFFICIENTSTABILITYCRITERION..316 9.1.3
ANEVOLUTIONEQUATIONFORSTUDYINGTHESTABILITYOF
ABASICSOLUTIONOFFLUIDFLOW.....................317 9.2
FUNDAMENTALIDEASONTHETHEORYOFTHESTABILITY
OFFLUIDMOTION........................................319 9.2.1
LINEARCASE.....................................320 9.2.2
NONLINEARCASE..................................322 9.3
THEGUIRAUD*ZEYTOUNIANASYMPTOTICAPPROACH
TONONLINEARHYDRODYNAMICSTABILITY.....................324 9.3.1
LINEARTHEORY...................................326 9.3.2
NONLINEARTHEORY*CONFINEDPERTURBATIONS.
LANDAUANDSTUARTEQUATIONS.....................328 9.3.3
NONLINEARTHEORY*UNCONFINEDPERTURBATIONS.
GENERALSETTING..................................331 9.3.4
NONLINEARTHEORY*UNCONFINEDPERTURBATIONS.
TOLLMIEN*SCHLICHTINGWAVES.......................332 9.3.5
NONLINEARTHEORY*UNCONFINEDPERTURBATIONS.
RAYLEIGH*B´ENARDCONVECTION......................335 9.4
SOMEFACETSOFTHERBANDBMPROBLEM..................337 9.4.1
RAYLEIGH*B´ENARDCONVECTIVEINSTABILITY.............337 9.4.2
B´ENARD*MARANGONI(BM)THERMOCAPILLARY
INSTABILITYPROBLEMFORATHINLAYER(FILM)
WITHADEFORMABLEFREESURFACE....................356 9.5
COUETTE*TAYLORVISCOUSFLOW
BETWEENTWOROTATINGCYLINDERS.........................370 9.5.1
ASHORTSURVEY..................................370 9.5.2
BIFURCATIONS.....................................376 9.6
CONCLUDINGCOMMENTSANDREMARKS......................380 10
AFINITE-DIMENSIONALDYNAMICALSYSTEMAPPROACH TOTURBULENCE
............................................ 387 10.1
APHENOMENOLOGICALAPPROACHTOTURBULENCE..............387 10.2
BIFURCATIONSINDISSIPATIVEDYNAMICALSYSTEMS.............392 10.2.1
NORMALFORMOFTHEPITCHFORKBIFURCATION...........395 10.2.2
NORMALFORMOFTHEHOPFBIFURCATION ..............396 10.2.3
BIFURCATIONFROMAPERIODICORBIT
TOANINVARIANTTORUS.............................398 10.3
TRANSITIONTOTURBULENCE:SCENARIOS,ROUTESTOCHAOS.......398 10.3.1
THELANDAU*HOPF*INADEQUATE*SCENARIO...........399 10.3.2
THERUELLE*TAKENS*NEWHOUSESCENARIO.............399 10.3.3
THEFEIGENBAUMSCENARIO.........................403 CONTENTS XV 10.3.4
THEPOMEAU*MANNEVILLESCENARIO..................406 10.3.5
COMPLEMENTARYREMARKS.........................408 10.4
STRANGEATTRACTORSFORVARIOUSFLUIDFLOWS................414 10.4.1
VISCOUSISOCHORICWAVEMOTIONS...................414 10.4.2
THEB´ENARD*MARANGONIPROBLEMFORAFREE-FALLING VERTICALFILM:THECASEOFRE= O
(1) ANDTHEKSEQUATION.............................417 10.4.3
THEB´ENARD*MARANGONIPROBLEMFORAFREE-FALLING VERTICALFILM:THECASEOFRE /*
= O (1) ANDTHEKS*KDVEQUATION .......................424 10.4.4
VISCOUSANDTHERMALEFFECTS
INASIMPLESTRATIFIEDFLUIDMODEL.................427 10.4.5
OBUKHOVDISCRETECASCADESYSTEMS
FORDEVELOPEDTURBULENCE.........................435 10.4.6
UNPREDICTABILITYINVISCOUSFLUIDFLOW
BETWEENASTATIONARYANDAROTATINGDISK..........439 10.5
SOMECOMMENTSANDREFERENCES .........................444 REFERENCES
.................................................... 449 INDEX
......................................................... 485
|
any_adam_object | 1 |
author | Zeytounian, Radyadour Kh. 1928- |
author_GND | (DE-588)112097952 |
author_facet | Zeytounian, Radyadour Kh. 1928- |
author_role | aut |
author_sort | Zeytounian, Radyadour Kh. 1928- |
author_variant | r k z rk rkz |
building | Verbundindex |
bvnumber | BV015772111 |
callnumber-first | Q - Science |
callnumber-label | QA929 |
callnumber-raw | QA929 |
callnumber-search | QA929 |
callnumber-sort | QA 3929 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4000 |
classification_tum | PHY 216f |
ctrlnum | (OCoLC)51222090 (DE-599)BVBBV015772111 |
dewey-full | 532/.0533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0533 |
dewey-search | 532/.0533 |
dewey-sort | 3532 3533 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01545nam a2200421zc 4500</leader><controlfield tag="001">BV015772111</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021217s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968695205</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540440135</subfield><subfield code="9">3-540-44013-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51222090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV015772111</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA929</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0533</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 216f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeytounian, Radyadour Kh.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112097952</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and applications of viscous fluid flows</subfield><subfield code="c">Radyadour Kh. Zeytounian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 488 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous flow</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010125132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010125132</subfield></datafield></record></collection> |
id | DE-604.BV015772111 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:09:39Z |
institution | BVB |
isbn | 3540440135 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010125132 |
oclc_num | 51222090 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-M49 DE-BY-TUM DE-634 DE-11 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-M49 DE-BY-TUM DE-634 DE-11 |
physical | XV, 488 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series2 | Physics and astronomy online library |
spelling | Zeytounian, Radyadour Kh. 1928- Verfasser (DE-588)112097952 aut Theory and applications of viscous fluid flows Radyadour Kh. Zeytounian Berlin [u.a.] Springer 2004 XV, 488 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Physics and astronomy online library Includes bibliographical references and index Fluid dynamics Viscous flow Viskose Strömung (DE-588)4226965-9 gnd rswk-swf Viskose Strömung (DE-588)4226965-9 s DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010125132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zeytounian, Radyadour Kh. 1928- Theory and applications of viscous fluid flows Fluid dynamics Viscous flow Viskose Strömung (DE-588)4226965-9 gnd |
subject_GND | (DE-588)4226965-9 |
title | Theory and applications of viscous fluid flows |
title_auth | Theory and applications of viscous fluid flows |
title_exact_search | Theory and applications of viscous fluid flows |
title_full | Theory and applications of viscous fluid flows Radyadour Kh. Zeytounian |
title_fullStr | Theory and applications of viscous fluid flows Radyadour Kh. Zeytounian |
title_full_unstemmed | Theory and applications of viscous fluid flows Radyadour Kh. Zeytounian |
title_short | Theory and applications of viscous fluid flows |
title_sort | theory and applications of viscous fluid flows |
topic | Fluid dynamics Viscous flow Viskose Strömung (DE-588)4226965-9 gnd |
topic_facet | Fluid dynamics Viscous flow Viskose Strömung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010125132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zeytounianradyadourkh theoryandapplicationsofviscousfluidflows |