Stochastic models in queueing theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Academic Press
2003
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Publisher description Table of contents Inhaltsverzeichnis |
Beschreibung: | XVIII, 482 S. graph. Darst. |
ISBN: | 0124874622 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV015314876 | ||
003 | DE-604 | ||
005 | 20090706 | ||
007 | t | ||
008 | 021210s2003 ne d||| |||| 00||| eng d | ||
020 | |a 0124874622 |9 0-12-487462-2 | ||
035 | |a (OCoLC)51448382 | ||
035 | |a (DE-599)BVBBV015314876 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a ne |c XA-NL | ||
049 | |a DE-29T |a DE-521 |a DE-634 | ||
050 | 0 | |a T57.9.M45 2003 | |
082 | 0 | |a 519.8/2 21 | |
082 | 0 | |a 519.8/2 |2 21 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Medhi, Jyotiprasad |e Verfasser |0 (DE-588)12875298X |4 aut | |
245 | 1 | 0 | |a Stochastic models in queueing theory |c J. Medhi |
250 | |a 2. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Academic Press |c 2003 | |
300 | |a XVIII, 482 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Queuing theory | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Wartesystem |0 (DE-588)4251734-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wartesystem |0 (DE-588)4251734-5 |D s |
689 | 1 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |D s |
689 | 2 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/description/els031/2002110814.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/toc/els031/2002110814.html |3 Table of contents | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010102831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010102831 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804129694043340800 |
---|---|
adam_text | J. MEDHI STOCHASTIC MODELS IN QUEUEINGTHEORY S F I C I N D E D I T I O N
ACADEMIC PRESS V Y AN IMPRINTOF ELSEVIER SCIENCE AMSTERDAM SOSTON LONDON
NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO
CONTENTS PREFACE XV CHAPTER L STOCHASTIC PROCESSES 1 1.1 INTRODUCTION 1
1.2 MARKOV CHAINS 2 1.2.1 BASIC IDEAS 2 1.2.2 CLASSIFICATION OF STATES
AND CHAINS 4 1.3 CONTINUOUS-TIME MARKOV CHAINS 14 1.3.1 SOJOURNTIME 14
1.3.2 TRANSITION DENSITY MATRIX OR INFINITESIMAL GENERATOR 15 1.3.3
LIMITING BEHAVIOR: ERGODICITY 16 1.3.4 TRANSIENT SOLUTION 18 1.3.5
ALTERNATIVE DEFINITION 19 1.4 BIRTH-AND-DEATH PROCESSES 23 1.4.1 SPECIAL
CASE: M/M/L QUEUE 25 1.4.1 PURE BIRTH PROCESS: YULE-FURRY PROCESS 25 1.5
POISSON PROCESS 25 1.5.1 PROPERTIES OFTHE POISSON PROCESS 28 1.5.2
GENERALIZATION OFTHE POISSON PROCESS 29 1.5.3 ROLE OFTHE POISSON PROCESS
IN PROBABILITY MODEIS 31 1.6 RANDOMIZATION: DERIVED MARKOV CHAINS 32
1.6.1 MARKOV CHAIN ON AN UNDERLYING POISSON PROCESS (OR SUBORDINATED TO
A POISSON PROCESS) 33 VII VIII CONTENTS 1.6.2 EQUIVALENCE OF THE TWO
LIMITINGFORMS 33 1.6.3 NUMERICAL METHOD 34 1.7 RENEWAL PROCESSES 35
1.7.1 INTRODUCTION 35 1.7.2 RESIDUAL AND EXCESS LIFETIMES 36 1.8
REGENERATIVE PROCESSES 37 1.8.1 APPLICATION IN QUEUEING THEORY 38 1.9
MARKOV RENEWAL PROCESSES AND SEMI-MARKOV PROCESSES 39 PROBLEMS 41
REFERENCES AND FURTHER READING 46 CHAPTER2 QUEUEING SYSTEMS: GENERAL
CONCEPTS 47 2.1 INTRODUCTION 47 2.1.1 BASIC CHARACTERISTICS 48 2.1.2 THE
INPUT OR ARRIVAL PATTERN OFCUSTOMERS 48 2.1.3 THE PATTERN OF SERVICE 49
2.1.4 THE NUMBER OF SERVERS 49 2.1.5 THE CAPACITY OF THE SYSTEM 49 2.1.6
THE QUEUE DISCIPLINE 49 2.2 QUEUEING PROCESSES 50 2.3 NOTATION 51 2.4
TRANSIENT AND STEADY-STATE BEHAVIOR 52 2.5 LIMITATIONS OF THE
STEADY-STATE DISTRIBUTION 53 2.6 SOME GENERAL RELATIONSHIPS IN QUEUEING
THEORY 54 2.7 POISSON ARRIVAL PROCESS AND ITS CHARACTERISTICS 59 2.7.1
PASTA: POISSON ARRIVALS SEE TIME AVERAGES 59 2.7.2 ASTA: ARRIVALS SEE
TIME AVERAGES 62 REFERENCES AND FURTHER READING 62 CHAPTER3
BIRTH-AND-DEATH QUEUEING SYSTEMS: EXPONENTIAL MODELS 65 3.1 INTRODUCTION
65 3.2 THE SIMPLE AF/AF/1 QUEUE 65 3.2.1 STEADY-STATE SOLUTION OFAF/M/1
66 3.2.2 WAITING-TIME DISTRIBUTIONS 68 3.2.3 THE OUTPUT PROCESS 72 3.2.4
SEMI-MARKOV PROCESS ANALYSIS 75 3.3 SYSTEM WITH LIMITED WAITING SPACE:
THE M/M/L/K MODEL 77 3.3.1 STEADY-STATE SOLUTION 77 3.3.2 EXPECTED
NUMBER IN THE SYSTEM L 78 3.3.3 EQUIVALENCE OF ANM/AF/L/KMODEL WITH A
TWO-STAGE CYCLIC MODEL 80 CONTENTS IX 3.4 BIRTH-AND-DEATH PROCESSES:
EXPONENTIAL MODELS 81 3.5 THE M/M/CO MODEL: EXPONENTIAJ MODEL WITH AN
INFINITE NUMBEROF SERVERS 83 3.6 THE MODEL M/M/E 84 3.6.1 STEADY-STATE
DISTRIBUTION 84 3.6.2 EXPECTED NUMBER OF BUSY AND IDLE SERVERS 87 3.6.3
WAITING-TIME DISTRIBUTIONS 89 3.6.4 THE OUTPUT PROCESS 93 3.7 THE
M/M/C/C SYSTEM: ERLANG LOSS MODEL 95 3.7.1 ERLANG LOSS (BLOCKING)
FORMULA: RECURSIVE ALGORITHM 99 3.7.2 RELATION BETWEENERLANG SSS
ANDCFORMUIAS 100 3.8 MODEL WITH FINITE INPUTSOURCE 101 3.8.1
STEADY-STATE DISTRIBUTION: M /M/CJ JM (M C). ENGSET DELAY MODEL 101
3.8.2 ENGSET LOSS MODEL M/M/C//M/{M C) 106 3.8.3 THE MODEL M/M/C//M (M
C) 109 3.9 TRANSIENT BEHAVIOR 110 3.9.1 INTRODUCTION 110 3.9.2
DIFFERENCE-EQUATION TECHNIQUE 112 3.9.3 METHOD OF GENERATINGFUNCTION 117
3.9.4 BUSY-PERIOD ANALYSIS 119 3.9.5 WAITING-TIME PROCESS: VIRTUAL
WAITINGTIME 125 3.10 TRANSIENT-STATE DISTRIBUTION OFTHE M/M/C MODEL 127
3.10.1 SOLUTION OFTHE DIFFERENTIAL-DIFFERENCE EQUATIONS 127 3.10.2 BUSY
PERIOD OF AN M/M/C QUEUE 133 3.10.3 TRANSIENT-STATE DISTRIBUTION OFTHE
OUTPUT OF AN M/M/C QUEUE 136 3.11 MULTICHANNEL QUEUE WITH ORDEREDENTRY
138 3.11.1 TWO-CHANNEL MODEL WITH ORDERED ENTRY (WITH FINITE CAPACITY)
139 3.11.2 THECASEM = L,/V = A/ 140 3.11.3 PARTICULARCO.SE:/W = N = 1
(OVERFLOW SYSTEM) 142 3.11.4 OUTPUT PROCESS 144 PROBLEMS AND COMPLEMENTS
145 REFERENCES AND FURTHER READING 159 CHAPTER4 NON-BIRTH-AND-DEATH
QUEUEING SYSTEMS: MARKOVIAN MODELS 165 4.1 INTRODUCTION 165 4.1.1 THE
SYSTEM M/EJ 165 4.1.2 THE SYSTEM E K /M/ 170 X CONTENTS 4.2 BULK
QUEUES 174 4.2.1 MARKOVIAN BULK-ARRIVAL SYSTEM: M X /M/L IIA 4.2.2
EQUIVALENCEOFAF//W/LAND/M/E R /L SYSTEMS 178 4.2.3 WAITING-TIME
DISTRIBUTION IN AN M X /M/L QUEUE 178 4.2.4 TRANSIENT-STATE BEHAVIOR 179
4.2.5 THE SYSTEM M X /M/OO 181 4.3 QUEUEING MODELS WITH BULK (BATCH)
SERVICE 185 4.3.1 THE SYSTEM M/M{A, O)/L 186 4.3.2 DISTRIBUTION OF THE
WAITING-TIME FOR THE SYSTEM M/M(A,B)/L 190 4.3.3 SERVICE BATCH-SIZE
DISTRIBUTION 195 4.4 M/M(A,I»)/L:TRANSIENT-STATE DISTRIBUTION 196 4.4.1
STEADY-STATE SOLUTION 198 4.4.2 BUSY-PERIOD DISTRIBUTION 198 4.5
TWO-SERVER MODEL :M/M(A,D)/2 202 4.5.1 PARTICULARCASE: M/M(L,B)/2 204
4.6 THE AF/AF(L,O)/C MODEL 205 4.6.1 STEADY-STATE RESULTS M/M(L ; B)/C
208 PROBLEMS AND COMPLEMENTS 210 REFERENCES AND FURTHER READING 217
CHAPTER5 NETWORK OF QUEUES 221 5.1 NETWORK OF MARKOVIAN QUEUES 221 5.2
CHANNELS IN SERIES OR TANDEM QUEUES 222 5.2.1 QUEUES IN SERIES WITH
MULTIPLE CHANNELS AT EACH PHASE 224 5.3 JACKSON NETWORK 226 5.4 CLOSED
MARKOVIAN NETWORK (GORDON AND NEWELL NETWORK) 233 5.5 CYCLIC QUEUE 236
5.6 BCMP NETWORKS 238 5.7 CONCLUDING REMARKS 240 5.7.1 LOSS NETWORKS 241
PROBLEMS AND COMPLEMENTS 242 REFERENCES AND FURTHER READING 249 CHARTER
6 NON-MARKOVIAN QUEUEING SYSTEMS 255 6.1 INTRODUCTION 255 6.2
EMBEDDED-MARKOV-CHAIN TECHNIQUE FOR THE SYSTEM WITH POISSON INPUT 256
CONTENTS 6.3 THE M/G/L MODE!: POLLACZEK-KHINCHIN FORMULA 259 6.3.1
STEADY-STATE CFISTRIBUTION OF DEPARTURE EPOCH SYSTEM SIZE 259 6.3.2
WAITING-TIME DISTRIBUETION 261 6.3.3 GENERAL TIME SYSTEM SIZE
DISTRIBUETION OF ANM/G/1 QUEUE: SUPPLEMENTARY VARIABLE TECHNIQUE 267
6.3.4 SEMI-MARKOV PRACESS APPROACH 274 6.3.5 APPROACH VIA MARTINGALE 274
6.4 BUS/PERIOD 276 6.4.1 INTRODUCTION 276 6.4.2 BUSY-PERIOD
DISTRIBUETION: TAKACS INTEGRAL EQUATION 277 6.4.3 FURTHER DISCUSSION
OFTHE BUSY PERIOD 279 6.4.4 DELAY BUSY PERIOD 284 6.4.5 DELAY BUSY
PERIOD UNDER N-POLICY 28B 6.5 QUEUES WITH FINITE INPUT SOURCE: M/G/ 1//N
SYSTEM 289 6.6 SYSTEM WITH LIMITED WAITING SPACE: M/G/L/K SYSTEM 292 6.7
THEAF/G/1 MODEL WITH BULK ARRIVAL 295 6.7.1 THE NUMBER IN THE SYSTEM AT
DEPARTURE EPOCHS IN STEADY STATE (POLLACZEK-KHINCHIN FORMULA) 295 6.7.2
WAITING-TIME DISTRIBUETION 295 6.7.3 FEEDBACKQUEUES 302 6.8 THE M/G(A,
O)/L MODEL WITH GENERAL BULK SERVICE 304 6.9 THE G/M/L MODEL 306 6.9.1
STEADY-STATE ARRIVAL EPOCH SYSTEM SIZE 306 6.9.2 GENERAL TIME SYSTEM
SIZE IN STEADY STATE 309 6.9.3 WAITING-TIME DISTRIBUETION 311 6.9.4
EXPECTED DURATION OF BUSY PERIOD AND IDLE PERIOD 313 6.10 MULTISERVER
MODEL 314 6.10.1 THE M/G/OO MODEL: TRANSIENT-STATE DISTRIBUETION 314
6.10.2 THE MODEL G/M/C 319 6.10.3 THEMODELM/G/C 322 6.11 QUEUES WITH
MARKOVIAN ARRIVAL PROCESS 324 PROBLEMS AND COMPLEMENTS 326 REFERENCES
AND FURTHER READING 334 XUE CONTENTS CHAPTER7 QUEUES WITH GENERAL ARRIVAL
TIME AND SERVICE-TIME DISTRIBUTIONS 339 7.1 THE G/G/L QUEUE WITH GENERAL
ARRIVAL TIME AND SERVICE-TIME DISTRIBUTIONS 339 7.1.1 LINDLEY S INTEGRAL
EQUATION 341 7.1.2 LAPLACE TRANSFORM OF IV 343 7.1.3 GENERALIZATION OF
THE POLLACZEK-KHINCHIN TRANSFORM FORMULA 346 7.2 MEAN AND VARIANCEOF
WAITINGTIMEW 348 7.2.1 MEAN OF IV (SINGLE-SERVER QUEUE) 348 7.2.2
VARIANCEOF W 351 7.2.3 MULTISERVER QUEUES: APPROXIMATION OF MEAN
WAITINGTIME 353 7.3 UUEUES WITH BATCH ARRIVALS G (X) /G/L 356 7.4 THE
OUTPUT PROCESSOFA G/G/L SYSTEM 358 7.4.1 PARTICULAR CASE 359 7.4.2
OUTPUT PROCESS OF A G/G/C SYSTEM 360 7.5 SOME BOUNDS FOR THE G/G/L
SYSTEM 360 7.5.1 BOUNDFORF{/) 360 7.5.2 BOUNDS FOR E(W) 360 PROBLEMS AND
COMPLEMENTS 368 REFERENCES AND FURTHER READING 371 CHAPTER8
MISCELLANEOUSTOPICS 375 8.1 HEAVY-TRAFFIC APPROXIMATION FOR WAITING-TIME
DISTRIBUTION 375 8.1.1 KINGMAN S HEAVY-TRAFFIC APPROXIMATION FOR A G/G/L
QUEUE 375 8.1.2 EMPIRICAL EXTENSION OF THEM/G/1 HEAVY-TRAFFIC
APPROXIMATION 379 8.1.3 G/M/C QUEUE IN HEAVYTRAFFIC 381 8.2 BROWNIAN
MOTION PROCESS 383 8.2.1 INTRODUCTION 383 8.2.2 ASYMPTOTIC QUEUE-LENGTH
DISTRIBATION 386 8.2.3 DIFFUSION APPROXIMATION FOR A G/G/L QUEU E 389
8.2.4 VIRTUAL DELAY FOR THE G/G/L SYSTEM 391 8.2.5 APPROACH THROUGH AN
ABSORBING BARRIER WITH INSTANTANEOUS RETURN 394 8.2.6 DIFFUSION
APPROXIMATION FOR A G/G/C QUEUE: STATE-DEPENDENT DIFFUSION EQUATION 395
CONTENTS XIII 8.2.7 DIFFUSION APPROXIMATIONFORANM/G/C MODEL 396 8.2.8
CONCLUDING REMARKS 397 8.3 QUEUEING SYSTEMS WITH VACATIONS 398 8.3.1
INTRODUCTION 398 8.3.2 STOCHASTIC DECOMPOSITION 399 8.3.3 POISSON INPUT
QUEUE WITH VACATIONS: [EXHAUSTIVE-SERVICE] QUEUE-LENGTH DISTRIBUTION 399
8.3.4 POISSON INPUT QUEUE WITH VACATIONS: WAITING-TIME DISTRIBUTION 404
8.3.5 M/G/L SYSTEM WITH VACATIONS: NANEXHAUSTIVE SERVICE 406 8.3.6
LIMITED SERVICE SYSTEM: M/G/L* V*, MODEL 407 8.3.7 GATED SERVICE SYSTEM:
M/G/1 * 1/P, MODEL 408 8.3.8 M/G/L/K QUEUE WITH MULTIPLE VACATIONS 412
8.3.9 MEAN VALUE ANALYSIS THROUGH HEURISTIC TREATMENT 416 8.4 DESIGN AND
CONTROL OF QUEUES 423 8.5 RETRIAL QUEUEING SYSTEM 427 8.5.1 RETRIAL
QUEUES: MODEL DESCRIPTION 427 8.5.2 SINGLE-SERVER MODEL: M/M/L RETRIAL
QUEUE 429 8.5.3 M/G/L RETRIAL QUEUE 432 8.5.4 MULTISERVER MODEIS 436
8.5.5 MODEL WITH FINITE ORBIT SIZE 439 8.5.6 OTHER RETRIAL QUEUE MODELS
440 8.6 EMERGENCE OFA NEW TREND IN TELETRAFFICTHEORY 441 8.6.1
INTRODUCTION 441 8.6.2 HEAVY-TAIL DISTRIBUTIONS 442 8.6.3 M/G/L WITH
HEAVY-TAILED SERVICE TIME 445 8.6.4 PARETO MIXTURE OF EXPONENTIAL (PME)
DISTRIBUTION 445 8.6.5 GAMMA MIXTURE OF PARETO (GMP) DISTRIBUTION 447
8.6.6 BETA MIXTURE OF EXPONENTIAL (BME) DISTRIBUTION 450 8.6.7 A CLASS
OF HEAVY-TAIL DISTRIBUTIONS 452 8.6.8 LONG-RANGE DEPENDENCE 454 PROBLEMS
AND COMPLEMENTS 455 REFERENCES AND FURTHER READING 461 APPENDIX 469
INDEX 477
|
any_adam_object | 1 |
author | Medhi, Jyotiprasad |
author_GND | (DE-588)12875298X |
author_facet | Medhi, Jyotiprasad |
author_role | aut |
author_sort | Medhi, Jyotiprasad |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV015314876 |
callnumber-first | T - Technology |
callnumber-label | T57 |
callnumber-raw | T57.9.M45 2003 |
callnumber-search | T57.9.M45 2003 |
callnumber-sort | T 257.9 M45 42003 |
callnumber-subject | T - General Technology |
classification_rvk | SK 820 |
ctrlnum | (OCoLC)51448382 (DE-599)BVBBV015314876 |
dewey-full | 519.8/221 519.8/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.8/2 21 519.8/2 |
dewey-search | 519.8/2 21 519.8/2 |
dewey-sort | 3519.8 12 221 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02220nam a2200553 c 4500</leader><controlfield tag="001">BV015314876</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090706 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021210s2003 ne d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124874622</subfield><subfield code="9">0-12-487462-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51448382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV015314876</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57.9.M45 2003</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.8/2 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.8/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Medhi, Jyotiprasad</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12875298X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic models in queueing theory</subfield><subfield code="c">J. Medhi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 482 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/els031/2002110814.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/els031/2002110814.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010102831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010102831</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV015314876 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:09:12Z |
institution | BVB |
isbn | 0124874622 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010102831 |
oclc_num | 51448382 |
open_access_boolean | |
owner | DE-29T DE-521 DE-634 |
owner_facet | DE-29T DE-521 DE-634 |
physical | XVIII, 482 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Academic Press |
record_format | marc |
spelling | Medhi, Jyotiprasad Verfasser (DE-588)12875298X aut Stochastic models in queueing theory J. Medhi 2. ed. Amsterdam [u.a.] Academic Press 2003 XVIII, 482 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Queuing theory Stochastic processes Wartesystem (DE-588)4251734-5 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Warteschlangentheorie (DE-588)4255044-0 gnd rswk-swf Warteschlangentheorie (DE-588)4255044-0 s Stochastischer Prozess (DE-588)4057630-9 s DE-604 Wartesystem (DE-588)4251734-5 s Stochastisches Modell (DE-588)4057633-4 s 1\p DE-604 http://www.loc.gov/catdir/description/els031/2002110814.html Publisher description http://www.loc.gov/catdir/toc/els031/2002110814.html Table of contents GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010102831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Medhi, Jyotiprasad Stochastic models in queueing theory Queuing theory Stochastic processes Wartesystem (DE-588)4251734-5 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastisches Modell (DE-588)4057633-4 gnd Warteschlangentheorie (DE-588)4255044-0 gnd |
subject_GND | (DE-588)4251734-5 (DE-588)4057630-9 (DE-588)4057633-4 (DE-588)4255044-0 |
title | Stochastic models in queueing theory |
title_auth | Stochastic models in queueing theory |
title_exact_search | Stochastic models in queueing theory |
title_full | Stochastic models in queueing theory J. Medhi |
title_fullStr | Stochastic models in queueing theory J. Medhi |
title_full_unstemmed | Stochastic models in queueing theory J. Medhi |
title_short | Stochastic models in queueing theory |
title_sort | stochastic models in queueing theory |
topic | Queuing theory Stochastic processes Wartesystem (DE-588)4251734-5 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastisches Modell (DE-588)4057633-4 gnd Warteschlangentheorie (DE-588)4255044-0 gnd |
topic_facet | Queuing theory Stochastic processes Wartesystem Stochastischer Prozess Stochastisches Modell Warteschlangentheorie |
url | http://www.loc.gov/catdir/description/els031/2002110814.html http://www.loc.gov/catdir/toc/els031/2002110814.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010102831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT medhijyotiprasad stochasticmodelsinqueueingtheory |