Finite volume methods for hyperbolic problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge texts in applied mathematics
|
Schlagworte: | |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | xix, 558 Seiten Diagramme |
ISBN: | 9780521009249 9780521810876 0521009243 0521810876 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014770989 | ||
003 | DE-604 | ||
005 | 20210824 | ||
007 | t | ||
008 | 021001s2002 |||| |||| 00||| eng d | ||
020 | |a 9780521009249 |9 978-0-521-00924-9 | ||
020 | |a 9780521810876 |9 978-0-521-81087-6 | ||
020 | |a 0521009243 |9 0-521-00924-3 | ||
020 | |a 0521810876 |9 0-521-81087-6 | ||
035 | |a (OCoLC)48221422 | ||
035 | |a (DE-599)BVBBV014770989 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-92 |a DE-91G |a DE-20 |a DE-634 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA377 | |
082 | 0 | |a 515/.353 |2 21 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a 65M06 |2 msc | ||
084 | |a 35L65 |2 msc | ||
084 | |a MAT 671f |2 stub | ||
084 | |a MAT 674f |2 stub | ||
100 | 1 | |a LeVeque, Randall J. |d 1955- |e Verfasser |0 (DE-588)112053688 |4 aut | |
245 | 1 | 0 | |a Finite volume methods for hyperbolic problems |c Randall J. Leveque, University of Washington |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a xix, 558 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Lois de conservation (Mathématiques) | |
650 | 4 | |a Volumes finis, Méthodes de | |
650 | 4 | |a Équations différentielles hyperboliques - Solutions numériques | |
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 4 | |a Differential equations, Hyperbolic |x Numerical solutions | |
650 | 4 | |a Finite volume method | |
650 | 0 | 7 | |a Finite-Volumen-Methode |0 (DE-588)4220855-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | 1 | |a Finite-Volumen-Methode |0 (DE-588)4220855-5 |D s |
689 | 1 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-010000640 |
Datensatz im Suchindex
_version_ | 1804129552456220672 |
---|---|
any_adam_object | |
author | LeVeque, Randall J. 1955- |
author_GND | (DE-588)112053688 |
author_facet | LeVeque, Randall J. 1955- |
author_role | aut |
author_sort | LeVeque, Randall J. 1955- |
author_variant | r j l rj rjl |
building | Verbundindex |
bvnumber | BV014770989 |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 |
callnumber-search | QA377 |
callnumber-sort | QA 3377 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 560 SK 920 |
classification_tum | MAT 671f MAT 674f |
ctrlnum | (OCoLC)48221422 (DE-599)BVBBV014770989 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02297nam a2200601 c 4500</leader><controlfield tag="001">BV014770989</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210824 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021001s2002 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521009249</subfield><subfield code="9">978-0-521-00924-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521810876</subfield><subfield code="9">978-0-521-81087-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521009243</subfield><subfield code="9">0-521-00924-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521810876</subfield><subfield code="9">0-521-81087-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)48221422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014770989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA377</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65M06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35L65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 671f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 674f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">LeVeque, Randall J.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112053688</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite volume methods for hyperbolic problems</subfield><subfield code="c">Randall J. Leveque, University of Washington</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 558 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lois de conservation (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volumes finis, Méthodes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles hyperboliques - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite volume method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Volumen-Methode</subfield><subfield code="0">(DE-588)4220855-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Finite-Volumen-Methode</subfield><subfield code="0">(DE-588)4220855-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010000640</subfield></datafield></record></collection> |
id | DE-604.BV014770989 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:06:57Z |
institution | BVB |
isbn | 9780521009249 9780521810876 0521009243 0521810876 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010000640 |
oclc_num | 48221422 |
open_access_boolean | |
owner | DE-703 DE-92 DE-91G DE-BY-TUM DE-20 DE-634 DE-83 DE-188 |
owner_facet | DE-703 DE-92 DE-91G DE-BY-TUM DE-20 DE-634 DE-83 DE-188 |
physical | xix, 558 Seiten Diagramme |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | LeVeque, Randall J. 1955- Verfasser (DE-588)112053688 aut Finite volume methods for hyperbolic problems Randall J. Leveque, University of Washington Cambridge Cambridge University Press 2002 xix, 558 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Cambridge texts in applied mathematics Hier auch später erschienene, unveränderte Nachdrucke Lois de conservation (Mathématiques) Volumes finis, Méthodes de Équations différentielles hyperboliques - Solutions numériques Conservation laws (Mathematics) Differential equations, Hyperbolic Numerical solutions Finite volume method Finite-Volumen-Methode (DE-588)4220855-5 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Hyperbolisches System (DE-588)4191897-6 s Finite-Volumen-Methode (DE-588)4220855-5 s |
spellingShingle | LeVeque, Randall J. 1955- Finite volume methods for hyperbolic problems Lois de conservation (Mathématiques) Volumes finis, Méthodes de Équations différentielles hyperboliques - Solutions numériques Conservation laws (Mathematics) Differential equations, Hyperbolic Numerical solutions Finite volume method Finite-Volumen-Methode (DE-588)4220855-5 gnd Hyperbolisches System (DE-588)4191897-6 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4220855-5 (DE-588)4191897-6 (DE-588)4131213-2 (DE-588)4128130-5 |
title | Finite volume methods for hyperbolic problems |
title_auth | Finite volume methods for hyperbolic problems |
title_exact_search | Finite volume methods for hyperbolic problems |
title_full | Finite volume methods for hyperbolic problems Randall J. Leveque, University of Washington |
title_fullStr | Finite volume methods for hyperbolic problems Randall J. Leveque, University of Washington |
title_full_unstemmed | Finite volume methods for hyperbolic problems Randall J. Leveque, University of Washington |
title_short | Finite volume methods for hyperbolic problems |
title_sort | finite volume methods for hyperbolic problems |
topic | Lois de conservation (Mathématiques) Volumes finis, Méthodes de Équations différentielles hyperboliques - Solutions numériques Conservation laws (Mathematics) Differential equations, Hyperbolic Numerical solutions Finite volume method Finite-Volumen-Methode (DE-588)4220855-5 gnd Hyperbolisches System (DE-588)4191897-6 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Lois de conservation (Mathématiques) Volumes finis, Méthodes de Équations différentielles hyperboliques - Solutions numériques Conservation laws (Mathematics) Differential equations, Hyperbolic Numerical solutions Finite volume method Finite-Volumen-Methode Hyperbolisches System Hyperbolische Differentialgleichung Numerisches Verfahren |
work_keys_str_mv | AT levequerandallj finitevolumemethodsforhyperbolicproblems |