Initial boundary value problem in nonlinear hyperbolic thermoelasticity: some applications in continuum mechanics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Polska Akad. Nauk, Inst. Matematyczny
2002
|
Schriftenreihe: | Dissertationes mathematicae
407 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 51 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV014742891 | ||
003 | DE-604 | ||
005 | 20030212 | ||
007 | t | ||
008 | 020919s2002 |||| 00||| eng d | ||
035 | |a (OCoLC)50974866 | ||
035 | |a (DE-599)BVBBV014742891 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G |a DE-739 |a DE-12 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA1 | |
082 | 0 | |a 515.35 |2 21 | |
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a MAT 354f |2 stub | ||
100 | 1 | |a Gawinecki, Jerzy August |e Verfasser |4 aut | |
245 | 1 | 0 | |a Initial boundary value problem in nonlinear hyperbolic thermoelasticity |b some applications in continuum mechanics |c Jerzy A. Gawinecki |
264 | 1 | |a Warszawa |b Polska Akad. Nauk, Inst. Matematyczny |c 2002 | |
300 | |a 51 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 407 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Thermoelasticity |x Mathematical models | |
650 | 0 | 7 | |a Thermoelastizität |0 (DE-588)4185143-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 1 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |D s |
689 | 0 | 2 | |a Thermoelastizität |0 (DE-588)4185143-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Dissertationes mathematicae |v 407 |w (DE-604)BV000003039 |9 407 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009986278&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-009986278 |
Datensatz im Suchindex
_version_ | 1804129471446384640 |
---|---|
adam_text | Titel: Initial boundary value problem in nonlinear hyperbolic thermoelasticity
Autor: Gawinecki, Jerzy August
Jahr: 2002
CONTENTS
1. Introduction..................................................................................................................................................5
2. Basic notation and formulae.......................................................... 8
3. The main theorem......................................................................................................................................16
4. Energy estimate..........................................................................................................................................18
4.1. Linearized system of hyperbolic thermoelasticity..................................................................18
4.2. Energy estimate for the linear hyperbolic system..................................................................18
5. Proof of Theorem 3.1................................................................................................................................24
6. Applications to nonlinear microelasticity theory. Formulation of the main theorem--------27
7. Energy estimate for the linearized microelasticity system..........................................................29
7.1. Linearized system of microelasticity theory..............................................................................29
7.2. Energy estimate for the linear system of microelasticity theory......................................29
8. Proof of Theorem 6.1................................................................................................................................33
9. Application to nonlinear thermodiffusion in a solid body............................................................36
10. Energy estimate for the linearized system of thermodiffusion in a solid body....................39
10.1. Linearized system of thermodiffusion in a solid body........................................................39
10.2. Energy estimate for the linear system of thermodiffusion in a solid body..................39
10.2.1. Energy estimate for the linear hyperbolic system..................................................39
10.2.2. Energy estimate for the linear parabolic system....................................................40
11. Proof of Theorem 9.1................................................................................................................................43
12. General remarks..........................................................................................................................................47
References..............................................................................................................................................................47
2000 Mathematics Subject Classification: 35K60, 3K05, 80A10, 80A20, 35G20, 35G25, 35G30,
35L45, 35L70.
Key words and phrases: nonlinear hyperbolic equations, nonlinear hyperbolic-parabolic systems
of equations, initial-boundary value problem, thermoelasticity theory, Sobolev spaces, fixed
point theorem, nonlinear microelasticity theory, energy estimate, nonlinear thermodifusion
in a solid body.
Received 14.11.2001; revised 7.2.2002.
|
any_adam_object | 1 |
author | Gawinecki, Jerzy August |
author_facet | Gawinecki, Jerzy August |
author_role | aut |
author_sort | Gawinecki, Jerzy August |
author_variant | j a g ja jag |
building | Verbundindex |
bvnumber | BV014742891 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 |
callnumber-search | QA1 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 390 |
classification_tum | MAT 354f |
ctrlnum | (OCoLC)50974866 (DE-599)BVBBV014742891 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01946nam a2200469 cb4500</leader><controlfield tag="001">BV014742891</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020919s2002 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50974866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014742891</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gawinecki, Jerzy August</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Initial boundary value problem in nonlinear hyperbolic thermoelasticity</subfield><subfield code="b">some applications in continuum mechanics</subfield><subfield code="c">Jerzy A. Gawinecki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Polska Akad. Nauk, Inst. Matematyczny</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">51 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">407</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelasticity</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermoelastizität</subfield><subfield code="0">(DE-588)4185143-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Thermoelastizität</subfield><subfield code="0">(DE-588)4185143-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">407</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">407</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009986278&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009986278</subfield></datafield></record></collection> |
id | DE-604.BV014742891 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:05:40Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009986278 |
oclc_num | 50974866 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-739 DE-12 DE-703 DE-188 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-739 DE-12 DE-703 DE-188 |
physical | 51 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Polska Akad. Nauk, Inst. Matematyczny |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Gawinecki, Jerzy August Verfasser aut Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics Jerzy A. Gawinecki Warszawa Polska Akad. Nauk, Inst. Matematyczny 2002 51 S. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 407 Mathematisches Modell Boundary value problems Initial value problems Thermoelasticity Mathematical models Thermoelastizität (DE-588)4185143-2 gnd rswk-swf Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 s Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 s Thermoelastizität (DE-588)4185143-2 s DE-604 Dissertationes mathematicae 407 (DE-604)BV000003039 407 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009986278&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gawinecki, Jerzy August Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics Dissertationes mathematicae Mathematisches Modell Boundary value problems Initial value problems Thermoelasticity Mathematical models Thermoelastizität (DE-588)4185143-2 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
subject_GND | (DE-588)4185143-2 (DE-588)4228136-2 (DE-588)4001990-1 |
title | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics |
title_auth | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics |
title_exact_search | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics |
title_full | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics Jerzy A. Gawinecki |
title_fullStr | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics Jerzy A. Gawinecki |
title_full_unstemmed | Initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics Jerzy A. Gawinecki |
title_short | Initial boundary value problem in nonlinear hyperbolic thermoelasticity |
title_sort | initial boundary value problem in nonlinear hyperbolic thermoelasticity some applications in continuum mechanics |
title_sub | some applications in continuum mechanics |
topic | Mathematisches Modell Boundary value problems Initial value problems Thermoelasticity Mathematical models Thermoelastizität (DE-588)4185143-2 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
topic_facet | Mathematisches Modell Boundary value problems Initial value problems Thermoelasticity Mathematical models Thermoelastizität Nichtlineare hyperbolische Differentialgleichung Anfangsrandwertproblem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009986278&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT gawineckijerzyaugust initialboundaryvalueprobleminnonlinearhyperbolicthermoelasticitysomeapplicationsincontinuummechanics |