Probabilistic design tools for vertical breakwaters:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Lisse [u.a.]
Balkema Publ.
2001
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 373 S. graph. Darst. |
ISBN: | 9058092488 9058092496 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014572696 | ||
003 | DE-604 | ||
005 | 20021210 | ||
007 | t | ||
008 | 020718s2001 d||| |||| 00||| eng d | ||
020 | |a 9058092488 |9 90-5809-248-8 | ||
020 | |a 9058092496 |9 90-5809-249-6 | ||
035 | |a (OCoLC)47894947 | ||
035 | |a (DE-599)BVBBV014572696 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a TC333 | |
082 | 0 | |a 627/.24 |2 21 | |
084 | |a ZI 6755 |0 (DE-625)156548: |2 rvk | ||
100 | 1 | |a Oumeraci, Hocine |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probabilistic design tools for vertical breakwaters |c Hocine Oumeraci ... |
264 | 1 | |a Lisse [u.a.] |b Balkema Publ. |c 2001 | |
300 | |a XIV, 373 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Breakwaters |x Design and construction | |
650 | 4 | |a Hydrodynamics | |
650 | 4 | |a Ocean waves | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Wellenbrecher |0 (DE-588)4273844-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konstruktion |0 (DE-588)4032231-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wellenbrecher |0 (DE-588)4273844-1 |D s |
689 | 0 | 1 | |a Konstruktion |0 (DE-588)4032231-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009908574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009908574 |
Datensatz im Suchindex
_version_ | 1804129351733608448 |
---|---|
adam_text | PROBABILISTIC DESIGN TOOLS FOR VERTICAL BREAKWATERS HOCINE OUMERACI,
ANDREAS KORTENHAUS TECHNICAL UNIVERSITY OF BRAUNSCHWEIG,
LEICHTWEIFI-INSTITUT FUR WASSERBAU, BRAUNSCHWEIG, GERMANY WILLIAM ALLSOP
HR WALLINGFORD, WALLINGFORD, U.K. MAARTEN DE GROOT GEODELFT, DELFT, THE
NETHERLANDS ROGER CROUCH UNIVERSITY OF SHEFFIELD, DEPARTMENT OF CIVIL
AND STRUCTURAL ENGINEERING, SHEFFIELD, U.K. HAN VRIJLING, HESSEL
VOORTMAN DELFT UNIVERSITY OF TECHNOLOGY, HYDRAULIC AND OFFSHORE
ENGINEERING SECTION, DELFT, THE NETHERLANDS EDITED BY ANDREAS KORTENHAUS
AND HESSEL VOORTMAN A.A. BALKEMA PUBLISHERS / LISSE / ABINGDON / EXTON
(PA) / TOKYO TABLE OF CONTENTS PREFACE XV A GUIDE TO THIS BOOK 1 CHAPTER
1 3 1.1 GENERAL BACKGROUND, OPPORTUNITY AND MOTIVATIONS 3 1.1.1 GENERAL
BACKGROUND AND OPPORTUNITY 3 1.1.2 MOTIVATIONS AND POSITION OF THE
DESIGN PROBLEM 5 1.1.2.1 MOTIVATIONS FOR MONOLITHIC COASTAL STRUCTURES /
BREAKWATERS 5 1.1.2.2 MOTIVATIONS FOR PROBABILISTIC DESIGN METHODS 6
1.1.2.3 POSITION OF THE DESIGN PROBLEM 7 1.2 BRIEF PRESENTATION OF
PROVERBS 10 1.2.1 OBJECTIVES 10 1.2.2 RESEARCH ISSUES 10 1.2.3 RESEARCH
STRATEGY AND DEVELOPMENT PROCEDURE FOR PROBABILISTIC DESIGN TOOLS 12
1.2.3.1 OVERALL STRATEGY 12 1.2.3.2 DEVELOPMENT PROCEDURE FOR
PROBABILISTIC TOOLS 13 1.2.3.3 DEVELOPMENT PROCEDURE FOR PARTIAL SAFETY
FACTOR SYSTEM (LEVEL I) 19 1.2.3.4 REPRESENTATIVE EXAMPLE STRUCTURES FOR
APPLICATION 19 1.3 KEY RESULTS AND THEIR PRACTICAL IMPORTANCE 21 1.3.1
HYDRODYNAMIC ASPECTS (TASK 1) 21 1.3.1.1 PARAMETER MAP FOR WAVE LOAD
CLASSIFICATION 23 1.3.1.2 NEW FORMULAE TO PREDICT IMPACT LOADING 25
1.3.1.3 EFFECT ENTRAINED/ENTRAPPED AIR ON SCALING IMPACT LOADS 27
1.3.1.4 EFFECT OF CAISSON LENGTH, WAVE OBLIQUITY AND SHORT- CRESTEDNESS
ON IMPACT FORCES 27 1.3.1.5 SEAWARD IMPACT FORCES INDUCED BY WAVE
OVERTOPPING 28 1.3.1.6 ARTIFICIAL NEURAL NETWORK MODELLING OF WAVE FORCE
29 1.3.1.7 NEW PREDICTION FORMULAE FOR PULSATING WAVE FORCES ON
PERFORATED CAISSON BREAKWATERS 29 1.3.1.8 NEW WAVE LOAD FORMULAE FOR
CROWN WALLS 32 VI PROBABILISTIC DESIGN TOOLS FOR VERTICAL BREAKWATERS
1.3.1.9 DEVELOPMENT OF WAVE LOAD FORMULAE FOR HIGH MOUND COMPOSITE
BREAKWATERS 33 1.3.2 , GEOTECHNICAL ASPECTS (TASK 2) 35 1.3.2.1 DATA
BASE FOR DESIGN SOIL PARAMETERS 35 1.3.2.2 ENGINEERING DYNAMIC MODELS
38 1.3.2.3 INSTANTANEOUS PORE PRESSURES 40 1.3.2.4 DEGRADATION AND
RESIDUAL PORE PRESSURES 41 1.3.2.5 LIMIT STATE EQUATIONS 42 1.3.2.6
UNCERTAINTIES 42 1.3.2.7 INFLUENCE OF DESIGN PARAMETERS ON FAILURE MODES
42 1.3.3 STRUCTURAL ASPECTS (TASK 3) 43 1.3.3.1 ANALYSIS OF EXISTING
CODES 44 1.3.3.2 PRE-SERVICE FAILURE MODES 44 1.3.3.3 LOADS FOR
IN-SERVICE CONDITIONS 46 1.3.3.4 IN-SERVICE STRUCTURAL FAILURE MODES 47
1.3.3.5 HIERARCHY OF REFINED MODELS 48 1.3.3.6 DURABILITY OF REINFORCED
CONCRETE MEMBERS 48 1.3.4 PROBABILISTIC DESIGN TOOLS (TASK 4) 48 1.3.5
TOWARD PROBABILISTIC RISK ANALYSIS AND MANAGEMENT 55 CHAPTER 2 61 2.1
INTRODUCTION 61 2.1.1 OBJECTIVES OF TASK 1 61 2.1.1.1 TECHNICAL PROGRESS
62 2.1.2 OUTLINE OF DETERMINISTIC DESIGN PROCEDURE 62 2.1.2.1 STEP 1:
IDENTIFICATION OF MAIN GEOMETRIC AND WAVE PARAMETERS 63 2.1.2.2 STEP 2:
FIRST ESTIMATE OF WAVE FORCE / MEAN PRESSURE OVER WALL HEIGHT 64 2.1.2.3
STEP 3: IMPROVE CALCULATION OF HORIZONTAL AND UP-LIFT FORCES 64 2.1.2.4
STEP 4: REVISE ESTIMATES OF CAISSON SIZE 65 2.1.2.5 STEP 5: IDENTIFY
LOADING CASE USING PARAMETER MAP 65 2.1.2.6 STEP 6: INITIAL CALCULATION
OF IMPACT FORCE 65 2.1.2.7 STEP 7: ESTIMATE PERCENTAGE OF BREAKING WAVES
LEADING TO IMPACTS PI% 66 2.1.2.8 STEP 8: ESTIMATE IMPACT FORCE USING
OUMERACI & KORTENHAUS METHOD 66 2.1.2.9 STEP 9: ESTIMATE IMPACT RISE
TIME AND DURATION 66 2.1.2.10 STEP 10: ESTIMATE UPLIFT FORCES UNDER
IMPACTS 66 CONTENTS VII 2.1.2.11 STEP 11: SCALE CORRECTIONS 67 *.
2.1.2.12 STEP 12: PRESSURE DISTRIBUTIONS 67 2.2 WAVES AT THE STRUCTURE
67 2.2.1 WAVE CONDITIONS AT THE STRUCTURE 67 2.2.1.1 NEAR-SHORE WAVE
TRANSFORMATION 72 2.2.1.2 DEPTH-LIMITED BREAKING 73 2.2.2 USE OF
PARAMETER MAP 75 2.2.3 ESTIMATION OF PROPORTION OF IMPACTS 78 2.3
HYDRAULIC RESPONSES 82 2.3.1 WAVE TRANSMISSION OVER CAISSONS 82 2.3.2
WAVE OVERTOPPING DISCHARGES 84 2.3.3 WAVE REFLECTIONS 84 2.3.3.1
VERTICAL BREAKWATERS AND SEAWALLS 84 2.3.3.2 PERFORATED STRUCTURES 84
2.4 PULSATING WAVE LOADS 87 2.4.1 HORIZONTAL AND VERTICAL FORCES /
PRESSURES 87 2.4.2 SEAWARD OR NEGATIVE FORCES 88 2.4.2.1 SAINFLOU S
PREDICTION METHOD 89 2.4.2.2 PROBABILISTIC DESIGN APPROACH FOR NEGATIVE
FORCES 90 2.4.2.3 DETERMINISTIC DESIGN APPROACH FOR NEGATIVE FORCES 91
2.4.3 EFFECTS OF 3-D WAVE ATTACK ON PULSATING LOADS 92 2.4.4
UNCERTAINTIES AND SCALE CORRECTIONS 92 2.4.4.1 UNCERTAINTIES 92 2.4.4.2
SCALING 93 2.4.5 USE OF NUMERICAL MODELS 94 2.4.6 PRESSURES ON BERMS 95
2.5 WAVE IMPACT LOADS 98 2.5.1 HORIZONTAL AND VERTICAL FORCES /
PRESSURES 98 2.5.1.1 HORIZONTAL FORCE AND RISE TIME 99 2.5.1.2 VERTICAL
PRESSURE DISTRIBUTION 101 2.5.1.3 UPLIFT FORCE 104 2.5.1.4 UPLIFT
PRESSURE DISTRIBUTION 104 2.5.1.5 EFFECT OF AERATION 105 2.5.2 SEAWARD
IMPACT FORCES 106 2.5.2.1 PHYSICAL MODEL TESTS 107 2.5.2.2 NUMERICAL
MODEL TESTS 107 2.5.2.3 INITIAL GUIDANCE 108 2.5.3 EFFECTS OF 3-D WAVE
ATTACK ON IMPACT LOADINGS 110 2.5.3.1 HORIZONTAL FORCES 110 2.5.3.2
VARIABILITY OF IMPACT FORCES ALONG THE BREAKWATER 110 2.5.3.3 EFFECT OF
CAISSON LENGTH 111 VIII PROBABILISTIC DESIGN TOOLS FOR VERTICAL
BREAKWATERS 2.5.4 UNCERTAINTIES AND SCALE CORRECTIONS 113 2.5.4.1
UNCERTAINTIES 113 2.5.4.2 SCALE CORRECTIONS 113 2.5.5 USE OF NUMERICAL
MODELS 115 2.5.6 PRESSURES ON BERMS 116 2.5.6.1 PRESSURE-IMPULSE
MODELLING 119 2.6 BROKEN WAVE LOADS 120 2.6.1 STRONGLY DEPTH-LIMITED
WAVES 120 2.6.2 WAVE LOADS ON CROWN WALLS 122 2.6.2.1 IMPACT PRESSURES
123 2.6.2.2 PULSATING PRESSURES 125 2.6.2.3 UPLIFT PRESSURES 126 2.6.3
WAVE LOADS ON CAISSON ON HIGH MOUNDS 127 2.6.3.1 CRITICAL WAVE HEIGHTS
128 2.6.3.2 CRITICAL WAVE PRESSURES 128 2.6.3.3 PRESSURES AND RESULTANT
FORCE FOR NON BREAKING WAVES 129 2.6.3.4 PRESSURES AND RESULTANT FORCE
FOR BREAKING WAVES 130 2.6.3.5 PRESSURES AND RESULTANT FORCE FOR BROKEN
WAVES 130 2.6.3.6 UPLIFT FORCES 130 2.7 FIELD MEASUREMENTS AND DATABASE
131 2.7.1 DIEPPE 131 2.7.2 PORTO TORRES 131 2.7.3 LASPALMAS 131 2.7.4
GIJON 131 2.7.5 ALDERNEY 132 2.7.6 FIELD MEASUREMENT DATABASE 133
2.7.6.1 DEFINITION OF DATABASE PARAMETERS 133 2.8 ALTERNATIVE LOW
REFLECTION STRUCTURES 134 2.8.1 PERFORATED VERTICAL WALLS 134 2.8.1.1
INTRODUCTION 134 2.8.1.2 PROTOTYPE MEASUREMENTS 135 2.8.1.3 MODEL TESTS
137 2.8.1.4 METHODS TO PREDICT FORCES FOR PERFORATED CAISSONS 139 2.8.2
OTHER TYPES OF CAISSONS 147 2.8.2.1 PHYSICS OF DAMPING 148 2.8.2.2
ANALYSIS IN TIME DOMAIN 148 2.8.2.3 STATISTICAL ANALYSIS 150 CHAPTER 3
157 3.1 INTRODUCTION 157 CONTENTS IX 3.2 GUIDELINES FOR MODELLING 158
3.2.1 GEOTECHNICAL FAILURE MODES 158 3.2.2 RELEVANT PHENOMENA 161 3.2.3
FRAMEWORK OF ANALYSIS 162 3.3 SOIL INVESTIGATIONS AND SOIL PARAMETERS
163 3.3.1 STRATEGY FOR SOIL INVESTIGATIONS 163 3.3.2 SEISMIC PROFILING
164 3.3.3 INTERPRETATION OF CPTU TESTS 164 3.3.4 BORINGS, SOIL SAMPLING
AND SAMPLE TESTING 167 3.3.4.1 BORINGS AND SOIL SAMPLING 167 3.3.4.2
SOIL CLASSIFICATION FROM SOIL SAMPLES 167 3.3.4.3 SPECIFIC TESTS ON SOIL
SAMPLES 167 3.3.5 CHARACTER OF SOIL PARAMETERS 168 3.3.5.1 RELATIONSHIP
BETWEEN SOIL INVESTIGATIONS AND SOIL PARAMETERS 168 3.3.5.2 SOIL TYPES
168 3.3.5.3 IMPORTANCE OF DENSITY, STRESS LEVEL AND STRESS HISTORY 168
3.3.6 PERMEABILITY 169 3.3.7 STIFFNESS 170 3.3.7.1 VIRGIN LOADING 170
3.3.7.2 UNLOADING/RELOADING: ELASTIC PARAMETERS 170 3.3.8 STRENGTH 171
3.3.8.1 NON-COHESIVE SOILS 171 3.3.8.2 COHESIVE SOILS 172 3.4 DYNAMICS
173 3.4.1 CONCEPT OF EQUIVALENT STATIONARY LOAD 173 3.4.2 BASIC
ASSUMPTIONS OF MASS-SPRING(-DASHPOT) MODEL 175 3.4.3 PREDICTION OF
NATURAL PERIODS 178 3.4.4 PREDICTION OF DYNAMIC RESPONSE FACTOR 181
3.4.5 INERTIA WITH PLASTIC DEFORMATION 183 3.5 INSTANTANEOUS PORE
PRESSURES AND UPLIFT FORCES 184 3.5.1 RELEVANT PHENOMENA 184 3.5.2
QUASI-STATIONARY FLOW IN THE RUBBLE FOUNDATION 185 3.5.3 UPLIFT FORCE,
DOWNWARD FORCE AND SEEPAGE FORCE IN RUBBLE FOUNDATION 187 3.5.4
NON-STATIONARY FLOW IN RUBBLE FOUNDATION 188 3.5.5 INSTANTANEOUS PORE
PRESSURES IN SANDY OR SILTY SUBSOIL 190 3.5.5.1 RELEVANCE OF DRAINAGE
DISTANCE 190 3.5.5.2 DRAINED REGION 190 3.5.5.3 UNDRAINED REGION 191 3.6
DEGRADATION AND RESIDUAL PORE PRESSURES 193 X PROBABILISTIC DESIGN TOOLS
FOR VERTICAL BREAKWATERS 3.6.1 RELEVANT PHENOMENA IN SUBSOIL 193 3.6.2
SANDY SUBSOILS 194 3.6.3 CLAYEY SUBSOILS 195 3.7 LIMIT STATE EQUATIONS
AND OTHER CALCULATION METHODS FOR STABILITY AND DEFORMATION 196 3.7.1
SCHEMATISATION OF LOADS DURING WAVE CREST 196 3.7.2 LIMIT STATE
EQUATIONS FOR MAIN FAILURE (SUB)MODES DURING WAVE CREST 199 3.7.3
SEAWARD FAILURE DURING WAVE TROUGH 201 3.7.4 MORE SOPHISTICATED METHODS
201 3.7.4.1 MORE SOPHISTICATED LIMIT STATE EQUATIONS 201 3.7.4.2 SLIDING
CIRCLE ANALYSIS ACCORDING TO BISHOP 201 3.7.4.3 FINITE ELEMENT MODELS
202 3.7.4.4 CENTRIFUGE MODEL TESTS 202 3.7.4.5 ANALYSIS OF UNACCEPTABLE
DEFORMATION AFTER SEVERAL LOAD CYCLES 202 3.7.5 THREE-DIMENSIONAL
RUPTURE SURFACES 203 3.8 UNCERTAINTIES 204 3.8.1 SURVEY OF UNCERTAINTIES
204 3.8.2 UNCERTAINTIES ABOUT SOIL PARAMETERS 206 3.8.3 MODEL
UNCERTAINTIES 207 3.9 INFLUENCE OF DESIGN PARAMETERS 209 3.9.1 GENERAL
209 3.9.2 VERTICAL BREAKWATER ON THIN BEDDING LAYER AND COARSE GRAINED
SUBSOIL WITH PULSATING WAVE LOADS 209 3.9.2.1 INPUT, ANALYSIS AND OUTPUT
OF PERFORMED INVESTIGATION 209 3.9.2.2 LESS RELEVANT
LOAD-CASE/FAILURE-MODE COMBINATIONS 210 3.9.2.3 IMPORTANT
LOAD-CASE/FAILURE-MODE COMBINATIONS 212 3.9.3 EFFECTS WITH OTHER
BREAKWATER TYPES 215 3.9.3.1 EFFECT OF A HIGH RUBBLE FOUNDATION 215
3.9.3.2 THE EFFECT OF WAVE IMPACTS 215 3.9.3.3 THE EFFECT OF FINE
GRAINED SUBSOIL 215 3.10 POSSIBILITIES FOR DESIGN IMPROVEMENTS 215
3.10.1 VARIATION OF DESIGN PARAMETERS IF RUBBLE FOUNDATION IS PRESENT
215 3.10.1.1 INCREASE THE MASS OF THE WALL 215 3.10.1.2 INCREASE OR
DECREASE WEIGHT ECCENTRICITY E C 216 3.10.1.3 REDUCTION OF WALL VOLUME
BELOW STILL WATER LEVEL 216 3.10.1.4 ENLARGEMENT OF B C 216 3.10.1.5
ENLARGING THE RUBBLE FOUNDATION 216 3.10.1.6 CONNECTING CAISSONS TO EACH
OTHER 217 3.10.1.7 SOIL REPLACEMENT OR SOIL IMPROVEMENT 217 CONTENTS XI
3.10.1.8 PROLONGATION OF SEEPAGE PATH IN RUBBLE FOUNDATION 217 3.10.2
CAISSON FOUNDATION DIRECTLY ON SAND 218 3.10.3 SKIRTS TO IMPROVE
FOUNDATION CAPACITY IN CLAYEY SOILS 218 CHAPTER 4 225 4.1 INTRODUCTION
225 4.1.1 BACKGROUND 225 4.1.2 DESIGN SEQUENCE 226 4.2 GENERIC TYPES OF
REINFORCED CONCRETE CAISSONS 227 4.2.1 PLANAR RECTANGULAR MULTI-CELLED
CAISSONS 227 4.2.2 PERFORATED RECTANGULAR MULTI-CELLED CAISSONS 228
4.2.3 CIRCULAR-FRONTED CAISSONS 228 4.2.4 ALTERNATIVE DESIGNS 229 4.3
LOADS ACTING ON THE CAISSON 229 4.4 GEOMECHANICAL FACTORS RELEVANT TO
THE STRUCUTRAL RESPONSE 229 4.4.1 CHARACTERISTICS OF THE BALLAST FILL IN
CAISSON CELLS 230 4.4.2 CHARACTERISTICS OF RUBBLE FOUNDATION AND
SUB-SOIL 230 4.4.3 UNEVENNESS OF THE FOUNDATION 231 4.5 HYDRAULIC DATA
REQUIRED TO DESIGN A REINFORCED CONCRETE CAISSON 231 4.5.1 PRESSURE
DISTRIBUTION ON FRONT FACE 231 4.5.2 UPLIFT PRESSURE DISTRIBUTION ON
BASE SLAB 232 4.5.3 OVER-PRESSURE ON TOP SLAB AND SUPER-STRUCTURE 232
4.6 FAILURE MODES ASSOCIATED WITH PRE-SERVICE AND IN- SERVICE CONDITIONS
233 4.6.1 PRE-SERVICE STATES 233 4.6.2 IN-SERVICE STATES 234 4.7 THE
NEED FOR A NEW INTEGRATED DESIGN CODE 236 4.7.1 DESIGN STANDARDS
RELEVANT TO REINFORCED CONCRETE CAISSONS 236 4.7.2 SCOPE OF SELECTED
CODES 237 4.7.3 COMPARISONS BETWEEN DESIGN CODES 237 4.7.4 SUGGESTED
FEATURES FOR A POSSIBLE NEW UNIFIED DESIGN CODE 239 4.8 SIMPLIFIED LIMIT
STATE EQUATIONS 241 4.8.1 IDENTIFICATION OF STRUCTURAL IDEALISATIONS 241
4.8.1.1 SIMPLIFIED BEAM AND SLAB ANALOGIES AND ASSOCIATED LIMIT STATE
EQUATIONS 242 4.8.2 LIMIT STATE EQUATIONS 245 4.8.2.1 ULS FOR FLEXURAL
FAILURE OF A REINFORCED CONCRETE MEMBER 245 XII PROBABILISTIC DESIGN
TOOLS FOR VERTICAL BREAKWATERS 4.8.2.2 ULS FOR SHEAR FAILURE OF A
REINFORCED CONCRETE MEMBER 247 4.8.2.3 CRACKING IN A FLEXURAL REINFORCED
CONCRETE MEMBER 247 4.8.2.4 CHLORIDE PENETRATION AND CORROSION IN
REINFORCED CONCRETE ELEMENTS 247 4.9 UNCERTAINTIES ATTRIBUTED TO THE LS
EQUATIONS: MORE REFINED STRUCTURAL MODELS 248 4.9.1 SIMPLE
3-DEGREE-OF-FREEDOM DYNAMIC MODEL 248 4.9.2 LAYERED SHELL NON-LINEAR FE
MODELS 251 4.9.3 FULL 3-DIMENSIONAL CONTINUUM FE MODELS 253 4.9.3.1
DYNAMIC FLUID-SOIL-STRUCTURE INTERACTION 256 4.9.3.2 MODELLING THE
DYNAMIC FAR-FIELD 257 4.9.3.3 QUANTIFYING THE UNCERTAINTIES 257 4.10
CONSTRUCTION ISSUES 258 CHAPTER 5 261 5.1 INTRODUCTION 261 5.2 GENERAL
INTRODUCTION OF PROBABILISTIC METHODS 262 5.2.1 INTRODUCTION 262 5.2.2
LIMIT STATE EQUATIONS AND UNCERTAINTIES 262 5.2.2.1 THE CONCEPT OF LIMIT
STATES 262 5.2.2.2 UNCERTAINTIES RELATED TO THE LIMIT STATE FORMULATION
264 5.2.3 RELIABILITY ANALYSIS ON LEVEL II AND III 265 5.2.3.1
INTRODUCTION 265 5.2.3.2 DIRECT INTEGRATION METHODS (LEVEL III) 266
5.2.3.3 APPROXIMATING METHODS (LEVEL II) 268 5.2.4 FAULT TREE ANALYSIS
271 5.2.4.1 GENERAL SYSTEM ANALYSIS BY FAULT TREE 271 5.2.5 CALCULATION
OF SYSTEM PROBABILITY OF FAILURE 272 5.2.5.1 INTRODUCTION 272 5.2.5.2
DIRECT INTEGRATION METHODS FOR SYSTEMS 273 5.2.5.3 APPROXIMATING METHODS
FOR SYSTEMS 274 5.2.6 CHOICE OF SAFETY LEVEL 275 5.2.7 RELIABILITY BASED
DESIGN PROCEDURES 277 5.2.7.1 GENERAL FORMULATION OF RELIABILITY BASED
OPTIMAL DESIGN 277 5.2.7.2 COST OPTIMISATION 279 5.2.7.3 PARTIAL SAFETY
FACTOR SYSTEM 284 5.3 PROBABILISTIC METHODS APPLIED TO VERTICAL
BREAKWATERS IN GENERAL 290 CONTENTS XIII 5.3.1 FAULT TREE FOR A VERTICAL
BREAKWATER 290 5.3.2 SPECIFIC LIMIT STATES FOR VERTICAL BREAKWATERS 290
5.3.2.1 INTRODUCTION 290 5.3.2.2 LOADING OF THE BREAKWATER 292 5.3.2.3
SERVICEABILITY LIMIT STATES RELATED TO PERFORMANCE OF THE BREAKWATER 292
5.3.2.4 FOUNDATION LIMIT STATES 293 5.3.2.5 STRUCTURAL LIMIT STATES 293
5.4 CASE STUDIES 294 5.4.1 GENERAL 294 5.4.2 GENOA VOLTRI (ITALY) 294
5.4.2.1 THE CASE 294 5.4.2.2 WAVE FORCES 295 5.4.2.3 FAILURE FUNCTIONS
296 5.4.2.4 VARIABLE STATISTICS 297 5.4.2.5 MODEL UNCERTAINTIES 299
5.4.2.6 SYSTEM FAILURE PROBABILITY 301 5.4.2.7 SENSITIVITY ANALYSIS 302
5.4.2.8 EFFECT OF BREAKING 303 5.4.2.9 CONCLUSIONS 303 5.4.3 EASCHEL
BREAKWATER 303 5.4.3.1 INTRODUCTION 303 5.4.3.2 BREAKWATER GEOMETRY AND
BOUNDARY CONDITIONS 304 5.4.3.3 INSHORE WAVE CLIMATE 306 5.4.3.4 LOADING
OF THE STRUCTURE 306 5.4.3.5 INFLUENCE OF THE BREAKWATER GEOMETRY ON THE
PROBABILITY OF CAISSON INSTABILITY 307 5.4.3.6 COMPARISON OF MODEL
COMBINATIONS FOR PULSATING WAVE FORCES 309 5.4.3.7 THE INFLUENCE OF
IMPACT LOADING 310 5.4.4 RELIABILITY ANALYSIS OF GEOTECHNICAL FAILURE
MODES FOR THE MUTSU-OGAWARA WEST BREAKWATER 311 5.4.4.1 INTRODUCTION 311
5.4.4.2 STOCHASTIC MODELS 312 5.4.4.3 RELIABILITY ANALYSIS 315 5.5
PERSPECTIVES 317 5.5.1 DURABILITY 317 5.5.2 IMPACTS 317 5.5.3
CONSTRUCTION 317 5.5.4 REFLECTION 318 5.5.5 SHEAR KEYS 318 XIV
PROBABILISTIC DESIGN TOOLS FOR VERTICAL BREAKWATERS CHAPTER 6 321 6.1
HYDRAULIC ASPECTS 321 6.2 GEOTECHNICAL ASPECTS 323 6.3 STRUCTURAL
ASPECTS 325 6.4 PROBABILISTIC ASPECTS 327 ANNEX 1 331 ANNEX 2 357 ANNEX
3 363 ANNEX 4 366
|
any_adam_object | 1 |
author | Oumeraci, Hocine |
author_facet | Oumeraci, Hocine |
author_role | aut |
author_sort | Oumeraci, Hocine |
author_variant | h o ho |
building | Verbundindex |
bvnumber | BV014572696 |
callnumber-first | T - Technology |
callnumber-label | TC333 |
callnumber-raw | TC333 |
callnumber-search | TC333 |
callnumber-sort | TC 3333 |
callnumber-subject | TC - Hydraulic and Ocean Engineering |
classification_rvk | ZI 6755 |
ctrlnum | (OCoLC)47894947 (DE-599)BVBBV014572696 |
dewey-full | 627/.24 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 627 - Hydraulic engineering |
dewey-raw | 627/.24 |
dewey-search | 627/.24 |
dewey-sort | 3627 224 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01515nam a2200421 c 4500</leader><controlfield tag="001">BV014572696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021210 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020718s2001 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9058092488</subfield><subfield code="9">90-5809-248-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9058092496</subfield><subfield code="9">90-5809-249-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47894947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014572696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC333</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">627/.24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZI 6755</subfield><subfield code="0">(DE-625)156548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oumeraci, Hocine</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic design tools for vertical breakwaters</subfield><subfield code="c">Hocine Oumeraci ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Lisse [u.a.]</subfield><subfield code="b">Balkema Publ.</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 373 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakwaters</subfield><subfield code="x">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenbrecher</subfield><subfield code="0">(DE-588)4273844-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konstruktion</subfield><subfield code="0">(DE-588)4032231-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellenbrecher</subfield><subfield code="0">(DE-588)4273844-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konstruktion</subfield><subfield code="0">(DE-588)4032231-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009908574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009908574</subfield></datafield></record></collection> |
id | DE-604.BV014572696 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:03:46Z |
institution | BVB |
isbn | 9058092488 9058092496 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009908574 |
oclc_num | 47894947 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XIV, 373 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Balkema Publ. |
record_format | marc |
spelling | Oumeraci, Hocine Verfasser aut Probabilistic design tools for vertical breakwaters Hocine Oumeraci ... Lisse [u.a.] Balkema Publ. 2001 XIV, 373 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Breakwaters Design and construction Hydrodynamics Ocean waves Probabilities Wellenbrecher (DE-588)4273844-1 gnd rswk-swf Konstruktion (DE-588)4032231-2 gnd rswk-swf Wellenbrecher (DE-588)4273844-1 s Konstruktion (DE-588)4032231-2 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009908574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Oumeraci, Hocine Probabilistic design tools for vertical breakwaters Breakwaters Design and construction Hydrodynamics Ocean waves Probabilities Wellenbrecher (DE-588)4273844-1 gnd Konstruktion (DE-588)4032231-2 gnd |
subject_GND | (DE-588)4273844-1 (DE-588)4032231-2 |
title | Probabilistic design tools for vertical breakwaters |
title_auth | Probabilistic design tools for vertical breakwaters |
title_exact_search | Probabilistic design tools for vertical breakwaters |
title_full | Probabilistic design tools for vertical breakwaters Hocine Oumeraci ... |
title_fullStr | Probabilistic design tools for vertical breakwaters Hocine Oumeraci ... |
title_full_unstemmed | Probabilistic design tools for vertical breakwaters Hocine Oumeraci ... |
title_short | Probabilistic design tools for vertical breakwaters |
title_sort | probabilistic design tools for vertical breakwaters |
topic | Breakwaters Design and construction Hydrodynamics Ocean waves Probabilities Wellenbrecher (DE-588)4273844-1 gnd Konstruktion (DE-588)4032231-2 gnd |
topic_facet | Breakwaters Design and construction Hydrodynamics Ocean waves Probabilities Wellenbrecher Konstruktion |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009908574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT oumeracihocine probabilisticdesigntoolsforverticalbreakwaters |