Diophantine equations and power integral bases: new computational methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston, Mass. ; Basel ; Berlin
Birkhäuser
2002
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 171 - 180 |
Beschreibung: | XIII, 184 Seiten 24 cm |
ISBN: | 3764342714 0817642714 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014570446 | ||
003 | DE-604 | ||
005 | 20200504 | ||
007 | t | ||
008 | 020716s2002 gw |||| 00||| eng d | ||
016 | 7 | |a 964696053 |2 DE-101 | |
020 | |a 3764342714 |9 3-7643-4271-4 | ||
020 | |a 0817642714 |9 0-8176-4271-4 | ||
035 | |a (OCoLC)49283460 | ||
035 | |a (DE-599)BVBBV014570446 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-634 |a DE-188 | ||
050 | 0 | |a QA242 | |
082 | 0 | |a 512/.72 |2 21 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
100 | 1 | |a Gaál, István |d 1960- |e Verfasser |0 (DE-588)123883768 |4 aut | |
245 | 1 | 0 | |a Diophantine equations and power integral bases |b new computational methods |c István Gaál |
264 | 1 | |a Boston, Mass. ; Basel ; Berlin |b Birkhäuser |c 2002 | |
300 | |a XIII, 184 Seiten |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 171 - 180 | ||
650 | 4 | |a Algebraic fields | |
650 | 4 | |a Bases (Linear topological spaces) | |
650 | 4 | |a Diophantine equations | |
650 | 0 | 7 | |a Algebraischer Körper |0 (DE-588)4141852-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Basis |g Mathematik |0 (DE-588)4228195-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraischer Körper |0 (DE-588)4141852-9 |D s |
689 | 1 | 1 | |a Basis |g Mathematik |0 (DE-588)4228195-7 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009906976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009906976 |
Datensatz im Suchindex
_version_ | 1808045561809469440 |
---|---|
adam_text |
CONTENTS
PREFACE
XI
ACKNOWLEDGEMENTS
XV
1
INTRODUCTION
1
1.1
BASIC
CONCEPTS
.
1
1.2
RELATED
RESULTS
.
4
2
AUXILIARY
RESULTS,
TOOLS
7
2.1
BAKER
'
S
METHOD,
EFFECTIVE
FINITENESS
THEOREMS
.
8
2.2
REDUCTION
.
9
2.2.1
DAVENPORT
LEMMA
.
9
2.2.2
THE
GENERAL
CASE
.
10
2.3
ENUMERATION
METHODS
.
12
2.4
SOFTWARE,
HARDWARE
.
16
3
AUXILIARY
EQUATIONS
19
3.1
THUE
EQUATIONS
.
19
3.1.1
ELEMENTARY
ESTIMATES
.
20
3.1.2
THUE
'
S
THEOREM
.
20
3.1.3
FAST
ALGORITHM
FOR
FINDING
"SMALL"
SOLUTIONS
.
21
3.1.4
EFFECTIVE
METHODS
.
22
3.1.5
THE
METHOD
OF
BILU
AND
HANROT
.
23
3.2
INHOMOGENEOUS
THUE
EQUATIONS .
24
VIII
CONTENTS
3.2.1
ELEMENTARY
ESTIMATES
.
25
3.2.2
BAKER
'
S
METHOD
.
26
3.2.3
REDUCTION,
TEST
.
27
3.2.4
AN
ANALOGUE
OF
THE
BILU-HANROT
METHOD
.
27
3.3
RELATIVE
THUE
EQUATIONS
.
28
3.3.1
BAKER
'
S
METHOD,
REDUCTION
.
29
3.3.2
ENUMERATION
.
31
3.3.3
AN
EXAMPLE
.
32
3.4
THE
RESOLUTION
OF
NORM
FORM
EQUATIONS
.
34
3.4.1
PRELIMINARIES
.
34
3.4.2
SOLVING
THE
UNIT
EQUATION
.
36
3.4.3
CALCULATING
THE
SOLUTIONS
OF
THE
NORM
FORM
EQUATION
.
38
3.4.4
EXAMPLES
.
39
4
INDEX
FORM
EQUATIONS
IN
GENERAL
45
4.1
THE
STRUCTURE
OF
THE
INDEX
FORM
.
45
4.2
USING
RESOLVENTS
.
47
4.3
FACTORIZING
THE
INDEX
FORM
WHEN
PROPER
SUBFIELDS
EXIST
.
47
4.4
COMPOSITE
FIELDS
.
48
4.4.1
COPRIME
DISCRIMINANTS
.
48
4.4.2
NON-COPRIME
DISCRIMINANTS
.
50
5
CUBIC
FIELDS
53
5.1
ARBITRARY
CUBIC
FIELDS
.
53
5.2
SIMPLEST
CUBIC
FIELDS
.
54
6
QUARTIC
FIELDS
55
6.1
ALGORITHM
FOR
ARBITRARY
QUARTIC
FIELDS
.
56
6.1.1
THE
RESOLVENT
EQUATION
.
56
6.1.2
THE
QUARTIC
THUE
EQUATIONS
.
57
6.1.3
PROOF
OF
THE
THEOREM
ON
THE
QUARTIC
THUE
EQUATIONS
.
60
6.1.4
EXAMPLES
.
64
6.2 SIMPLEST
QUARTIC
FIELDS
.
65
6.3
AN
INTERESTING
APPLICATION
TO
MIXED
DIHEDRAL
QUARTIC
FIELDS
.
66
6.4
TOTALLY
COMPLEX
QUARTIC
FIELDS
.
67
6.4.1
PARAMETRIC
FAMILIES
OF
TOTALLY
COMPLEX
QUARTIC
FIELDS
.
68
6.5
BICYCLIC
BIQUADRATIC
NUMBER
FIELDS
.
70
6.5.1
INTEGRAL
BASIS,
INDEX
FORM
.
70
6.5.2
THE
TOTALLY
REAL
CASE
.
71
6.5.3
THE
TOTALLY
COMPLEX
CASE
.
74
6.5.4
THE
FIELD
INDEX
OF
BICYCLIC
BIQUADRATIC
NUMBER
FIELDS
.
75
7
QUINTIC
FIELDS
79
7.1
ALGORITHM
FOR
ARBITRARY
QUINTIC
FIELDS
.
79
7.1.1
PRELIMINARIES
.
80
CONTENTS
IX
7.1.2
BAKER
'
S
METHOD,
REDUCTION
.
81
7.1.3
ENUMERATION
.
82
7.1.4
EXAMPLES
.
84
7.2
LEHMER
'
S
QUINTICS
.
88
7.2.1
INTEGER
BASIS,
UNIT
GROUP
.
89
7.2.2
THE
INDEX
FORM
.
91
7.2.3
THE
INDEX
FORM
EQUATION
.
92
7.2.4
THE
EXCEPTIONAL
CASE
.
94
8
SEXTIC
FIELDS
97
8.1
SEXTIC
FIELDS
WITH
A
QUADRATIC
SUBFIELD
.
97
8.1.1
REAL
QUADRATIC
SUBFIELD
.
99
8.1.2
TOTALLY
REAL
SEXTIC
FIELDS
WITH
A
QUADRATIC
AND
A
CUBIC
SUBFIELD
.
100
8.1.3
IMAGINARY
QUADRATIC
SUBFIELD
.
101
8.1.4
SEXTIC
FIELDS
WITH
AN
IINAGINARY
QUADRATIC
AND
A
REAL
CUBIC
SUBFIELD
.
101
8.1.5
PARAMETRIC
FAMILIES
OF
SEXTIC
FIELDS
WITH
IMAGINARY
QUADRATIC
AND
REAL
CUBIC
SUBFIELDS
.
106
8.2
SEXTIC
FIELDS
WITH
A
CUBIC
SUBFIELD
.
109
8.3
SEXTIC
FIELDS
AS
COMPOSITE
FIELDS
.
110
8.3.1
A
CYCLIC
SEXTIC
FIELD
.
ILL
8.3.2
A
NON-CYCLIC
SEXTIC
FIELD
.
ILL
8.3.3
THE
PARAMETRIC
FAMILY
OF
SIMPLEST
SEXTIC
FIELDS
.
ILL
9
RELATIVE
POWER
INTEGRAL
BASES
113
9.1
BASIC
CONCEPTS
.
113
9.2
RELATIVE
CUBIC
EXTENSIONS
.
114
9.2.1
EXAMPLE
1.
CUBIC
EXTENSION
OF
A
QUINTIC
FIELD
.
115
9.2.2
EXAMPLE
2.
CUBIC
EXTENSION
OF
A
SEXTIC
FIELD
.
116
9.2.3
COMPUTATIONAL
EXPERIENCES
.
121
9.3
RELATIVE
QUARTIC
EXTENSIONS
.
121
9.3.1
PRELIMINARIES
.
121
9.3.2
THE
CUBIC
RELATIVE
THUE
EQUATION
.
121
9.3.3
REPRESENTING
THE
VARIABLES
AS
BINARY
QUADRATIC
FORMS
.
.
.
123
9.3.4
THE
QUARTIC
RELATIVE
THUE
EQUATIONS
.
124
9.3.5
AN
EXAMPLE
FOR
COMPUTING
RELATIVE
POWER
INTEGRAL
BASES
IN
A
FIELD
OF
DEGREE
12
WITH
A
CUBIC
SUBFIELD
.
125
10
SOME
HIGHER
DEGREE
FIELDS
129
10.1
OCTIC
FIELDS
WITH
A
QUADRATIC
SUBFIELD
.
129
10.1.1
PRELIMINARIES
.
129
10.1.2
THE
UNIT
EQUATION
.
131
10.1.3
THE
INHOMOGENEOUS
THUE
EQUATION
.
132
10.1.4
SIEVING
.
133
X
CONTENTS
10.1.5
AN
EXAMPLE
FOR
COMPUTING
POWER
INTEGRAL
BASES
IN
AN
OCTIC
FIELD
WITH
A
QUADRATIC
SUBFIELD
.
134
10.2
NONIC
FIELDS
WITH
CUBIC
SUBFIELDS
.
136
10.2.1
THE
RELATIVE
THUE
EQUATIONS
.
137
10.2.2
THE
UNIT
EQUATION
OVER
THE
NORMAL
CLOSURE
.
138
10.2.3
THE
COMMON
VARIABLES
.
140
10.2.4
EXAMPLES
.
143
10.3
SOME
MORE
FIELDS
OF
HIGHER
DEGREE
.
143
10.3.1
POWER
INTEGRAL
BASES
IN
IMAGINARY
QUADRATIC
EXTENSIONS
OF
TOTALLY
REAL
CYCLIC
FIELDS
OF
PRIME
DEGREE
.
144
10.3.2
POWER
INTEGRAL
BASES
IN
IMAGINARY
QUADRATIC
EXTENSIONS
OF
LEHMER
'
S
QUINTICS
.
146
10.3.3
ONE
MORE
COMPOSITE
FIELD
.
147
11
TABLES
149
11.1
CUBIC
FIELDS
.
149
11.1.1
TOTALLY
REAL
CUBIC
FIELDS
.
150
11.1.2
COMPLEX
CUBIC
FIELDS
.
152
11.2
QUARTIC
FIELDS
.
152
11.2.1
THE
DISTRIBUTION
OF
THE
MINIMAL
INDICES
.
153
11.2.2
THE
AVERAGE
BEHAVIOR
OF
THE
MINIMAL
INDICES
.
153
11.2.3
TOTALLY
REAL
CYCLIC
QUARTIC
FIELDS
.
154
11.2.4
MONOGENIC
MIXED
DIHEDRAL
EXTENSIONS
OF
REAL
QUADRATIC
FIELDS
.
155
11.2.5
TOTALLY
REAL
BICYCLIC
BIQUADRATIC
NUMBER
FIELDS
.
156
11.2.6
TOTALLY
COMPLEX
BICYCLIC
BIQUADRATIC
NUMBER
FIELDS
.
160
11.2.7
SOME
MORE
QUARTIC
FIELDS
.
161
11.3
SEXTIC
FIELDS
.
167
11.3.1
TOTALLY
REAL
CYCLIC
SEXTIC
FIELDS
.
167
11.3.2
SEXTIC
FIELDS
WITH
IMAGINARY
QUADRATIC
SUBFIELDS
.
168
REFERENCES
171
AUTHOR
INDEX
181
SUBJECT
INDEX
183 |
any_adam_object | 1 |
author | Gaál, István 1960- |
author_GND | (DE-588)123883768 |
author_facet | Gaál, István 1960- |
author_role | aut |
author_sort | Gaál, István 1960- |
author_variant | i g ig |
building | Verbundindex |
bvnumber | BV014570446 |
callnumber-first | Q - Science |
callnumber-label | QA242 |
callnumber-raw | QA242 |
callnumber-search | QA242 |
callnumber-sort | QA 3242 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 SK 200 |
ctrlnum | (OCoLC)49283460 (DE-599)BVBBV014570446 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV014570446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200504</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020716s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">964696053</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764342714</subfield><subfield code="9">3-7643-4271-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817642714</subfield><subfield code="9">0-8176-4271-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49283460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014570446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA242</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gaál, István</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123883768</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diophantine equations and power integral bases</subfield><subfield code="b">new computational methods</subfield><subfield code="c">István Gaál</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass. ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 184 Seiten</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 171 - 180</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases (Linear topological spaces)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Basis</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4228195-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Basis</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4228195-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009906976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009906976</subfield></datafield></record></collection> |
id | DE-604.BV014570446 |
illustrated | Not Illustrated |
indexdate | 2024-08-22T00:30:14Z |
institution | BVB |
isbn | 3764342714 0817642714 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009906976 |
oclc_num | 49283460 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-634 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-634 DE-188 |
physical | XIII, 184 Seiten 24 cm |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser |
record_format | marc |
spelling | Gaál, István 1960- Verfasser (DE-588)123883768 aut Diophantine equations and power integral bases new computational methods István Gaál Boston, Mass. ; Basel ; Berlin Birkhäuser 2002 XIII, 184 Seiten 24 cm txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 171 - 180 Algebraic fields Bases (Linear topological spaces) Diophantine equations Algebraischer Körper (DE-588)4141852-9 gnd rswk-swf Diophantische Gleichung (DE-588)4012386-8 gnd rswk-swf Basis Mathematik (DE-588)4228195-7 gnd rswk-swf Diophantische Gleichung (DE-588)4012386-8 s DE-604 Algebraischer Körper (DE-588)4141852-9 s Basis Mathematik (DE-588)4228195-7 s DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009906976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gaál, István 1960- Diophantine equations and power integral bases new computational methods Algebraic fields Bases (Linear topological spaces) Diophantine equations Algebraischer Körper (DE-588)4141852-9 gnd Diophantische Gleichung (DE-588)4012386-8 gnd Basis Mathematik (DE-588)4228195-7 gnd |
subject_GND | (DE-588)4141852-9 (DE-588)4012386-8 (DE-588)4228195-7 |
title | Diophantine equations and power integral bases new computational methods |
title_auth | Diophantine equations and power integral bases new computational methods |
title_exact_search | Diophantine equations and power integral bases new computational methods |
title_full | Diophantine equations and power integral bases new computational methods István Gaál |
title_fullStr | Diophantine equations and power integral bases new computational methods István Gaál |
title_full_unstemmed | Diophantine equations and power integral bases new computational methods István Gaál |
title_short | Diophantine equations and power integral bases |
title_sort | diophantine equations and power integral bases new computational methods |
title_sub | new computational methods |
topic | Algebraic fields Bases (Linear topological spaces) Diophantine equations Algebraischer Körper (DE-588)4141852-9 gnd Diophantische Gleichung (DE-588)4012386-8 gnd Basis Mathematik (DE-588)4228195-7 gnd |
topic_facet | Algebraic fields Bases (Linear topological spaces) Diophantine equations Algebraischer Körper Diophantische Gleichung Basis Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009906976&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gaalistvan diophantineequationsandpowerintegralbasesnewcomputationalmethods |