Enzyme catalysis in organic synthesis: a comprehensive handbook 1
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2002
|
Ausgabe: | 2., completely rev. and enl. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVII, 334 S. Ill., graph. Darst. |
ISBN: | 3527299491 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV014529476 | ||
003 | DE-604 | ||
005 | 20111108 | ||
007 | t | ||
008 | 020708s2002 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 964051052 |2 DE-101 | |
020 | |a 3527299491 |9 3-527-29949-1 | ||
035 | |a (OCoLC)634395630 | ||
035 | |a (DE-599)BVBBV014529476 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-703 |a DE-355 |a DE-19 |a DE-83 |a DE-11 | ||
245 | 1 | 0 | |a Enzyme catalysis in organic synthesis |b a comprehensive handbook |n 1 |c ed. by Karlheinz Drauz ... |
250 | |a 2., completely rev. and enl. ed. | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c 2002 | |
300 | |a XXXVII, 334 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Organische Synthese |0 (DE-588)4075695-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Enzymkatalyse |0 (DE-588)4152480-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Organische Synthese |0 (DE-588)4075695-6 |D s |
689 | 0 | 1 | |a Enzymkatalyse |0 (DE-588)4152480-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Drauz, Karlheinz |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV014529474 |g 1 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009888862&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009888862 |
Datensatz im Suchindex
_version_ | 1808045740948193280 |
---|---|
adam_text |
IX
CONTENTS
FOREWORD
V
PREFACE
VII
VOLUME
I
1
INTRODUCTION
1
MARIA-REGINA
KULA
1.1
ENZYMES
AS
CATALYSTS
1
1.2
ENZYME
STRUCTURE
AND
FUNCTION
4
1.3
COFACTORS
AND
COENZYMES
12
1.4
ENZYME
NOMENCLATURE
21
1.5
ENZYME
KINETICS
23
1.5.1
REACTION
RATE
AND
SUBSTRATE
CONCENTRATION
23
1.5.2
INHIBITORS
AND
EFFECTORS
26
1.5.3
INFLUENCE
OF
PH
AND
BUFFERS
27
1.5.4
TEMPERATURE
28
1.6
ORGANIC
SOLVENTS
AS
REACTION
MEDIA
31
1.7
ENZYME
HANDLING:
QUALITY
REQUIREMENTS
32
1.8
BIOTRANSFORMATION
USING
WHOLE
CELIS
33
1.8.1
GENERAL
ASPECTS
33
1.8.2
BIOTRANSFORMATION
WITH
GROWING
CELIS
36
1.8.3
BIOTRANSFORMATION
WITH
RESTING
CELIS
37
1.8.4
BIOTRANSFORMATIONS
WITH
PERMEABILIZED
OR
DRIED
CELIS
37
BIBLIOGRAPHY
38
2
PRODUCTION
AND
ISOLATION
OF
ENZYMES
41
YOSHIHIKO
HIROSE
2.1
INTRODUCTION
41
2.2
ENZYME
SUPPLIERS
FOR
BIOTRANSFORMATION
44
2.3
ORIGINS
OF
ENZYMES
45
2.3.1
MICROBIAL
ENZYMES
45
2.3.2
PLANT
ENZYMES
46
2.3.3
ANIMAL
ENZYMES
46
XI
CONTENTS
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.6
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4
2.7.1.5
2.7.1.6
2.7.1.7
2.7.2
2.7.2.1
2.7.2.2
2.7.2.3
2.7.2.4
2.7.3
2.7.4
2.7.5
2.7.5.1
2.7.5.2
2.8
FERMENTATION
OF
ENZYMES
46
LIQUID
FERMENTATION
46
SOLID
FERMENTATION
47
EXTRACTION
OF
ENZYMES
47
EXTRACTION
OF
ENZYMES
47
MICROBIAL
ENZYMES
47
PLANT
ENZYMES
48
ANIMAL
ENZYMES
48
CONCENTRATION
48
PURIFICATION
OF
ENZYMES
49
CHROMATOGRAPHY
49
ION
EXCHANGE
CHROMATOGRAPHY
(IEX)
49
HYDROPHOBIE
INTERACTION
CHROMATOGRAPHY
(HIC)
54
GEL
FILTRATION
(GF)
56
REVERSED
PHASE
CHROMATOGRAPHY
58
HYDROGEN
BOND
CHROMATOGRAPHY
59
AFFINITY
CHROMATOGRAPHY
59
SALTING-OUT
CHROMATOGRAPHY
62
PRECIPITATION
62
PRECIPITATION
BY
SALTING
OUT
62
PRECIPITATION
BY
ORGANIC
SOLVENTS
63
PRECIPITATION
BY
CHANGING
PH
63
PRECIPITATION
BY
WATER-SOLUBLE
POLYMER
63
CRYSTALLIZATION
64
STABILIZATION
DUERING
PURIFICATION
64
STORAGE
OF
ENZYMES
64
STORAGE
IN
LIQUIDS
64
STORAGE
IN
SOLIDS
65
COMMERCIAL
BIOCATALYSTS
65
REFERENCES
66
3
RATIONAL
DESIGN
OF
FUNCTIONAL
PROTEINS
67
TADAYUKI
IMANAKA
AND
HARUYUKI
ATOMI
3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
PROTEIN
ENGINEERING
67
GENE
MANIPULATION
TECHNIQUES
IN
ENZYME
MODIFICATION
68
PROTEIN
CRYSTALLIZATION
70
COMPARATIVE
MODELING
OF
A
PROTEIN
STRUCTURE
73
WHAT
IS
NEEDED
TO
TAKE
A
RATIONAL
APPROACH?
75
EXAMPLES
OF
PROTEIN
ENGINEERING
76
PROTEIN
ENGINEERING
STUDIES:
PROVIDING
A
RATIONAL
EXPLANATION
FOR
ENZYME
SPECIFICITY
76
3.6.2
3.6.3
ENHANCING
THE
THERMOSTABILITY
OF
PROTEASES
78
CONTRIBUTION
OF
ION
PAIRS
TO
THE
THERMOSTABILITY
OF
PROTEINS
FROM
HYPERTHERMOPHILES
79
CONTENTS
|XI
3.6.4
THERMOSTABILITY
ENGINEERING
BASED
ON
THE
CONSENSUS
CONCEPT
80
3.6.5
CHANGING
THE
OPTIMAL
PH
OF
AN
ENZYME
81
3.6.6
CHANGING
THE
COFACTOR
SPECIFICITY
OF
AN
ENZYME
82
3.6.7
CHANGING
THE
SUBSTRATE
SPECIFICITY
OF
AN
ENZYME
84
3.6.8
CHANGING
THE
PRODUCT
SPECIFICITY
OF
AN
ENZYME
85
3.6.9
COMBINING
SITE-DIRECTED
MUTAGENESIS
WITH
CHEMICAL
MODIFICATION
86
3.6.10
CHANGING
THE
CATALYTIC
ACTIVITY
OF
A
PROTEIN
087
3.7
CONDUSIONS
89
REFERENCES
90
4
ENZYME
ENGINEERING
BY
DIRECTED
EVOLUTION
95
OLIVER
MAY,
CHRISTOPHER
A.
VOIGT
AND
FRANCES
H.
ARNOLD
4.1
INTRODUCTION
95
4.2
EVOLUTION
AS
AN
OPTIMIZING
PROCESS
96
4.2.1
THE
SEARCH
SPACE
OF
CHEMICAL
SOLUTIONS
97
4.2.2
THE
DIRECTED
EVOLUTION
ALGORITHM
98
4.3
CREATING
A
LIBRARY
OF
DIVERSE
SOLUTIONS
99
4.3.1
MUTAGENESIS
99
4.3.1.1
RANDOM
POINT
MUTAGENESIS
OFWHOLE
GENES
99
4.3.1.2
FOCUSED
MUTAGENESIS
104
4.3.1.3
CALCULATION
OF
MUTAGENESIS
HOT-SPOTS
105
4.3.2
RECOMBINATION
107
4.3.2.1
IN
VITRO
RECOMBINATION
107
4.3.2.2
IN
VIVO
RECOMBINATION
110
4.3.2.3
FAMILY
SHUFFLING
111
4.4
FINDING
IMPROVED
ENZYMES:
SCREENING
AND
SELECTION
112
4.4.1
YOU
GET
WHAT
YOU
SCREEN
FOR
113
4.4.2
SCREENING
STRATEGIES
113
4.4.2.1
LOW-THROUGHPUT
SCREENING
114
4.4.2.2
HIGH-THROUGHPUT
SCREENING
115
4.4.2.3
CHOOSING
LOW
VERSUS
HIGH
THROUGHPUT
116
4.4.2.4
ANALYZING
THE
MUTANT
FITNESS
DISTRIBUTION
117
4.4.3
SELECTION
AND
METHODS
TO
LINK
GENOTYPE
WITH
PHENOTYPE
119
4.5
APPLICATIONS
OF
DIRECTED
EVOLUTION
121
4.5.1
IMPROVING
FUNCTIONAL
ENZYME
EXPRESSION
AND
SECRETION
122
4.5.2
ENGINEERING
ENZYMES
FOR
NON-NATURAL
ENVIRONMENTS
127
4.5.3
ENGINEERING
ENZYME
SPECIFICITY
129
4.5.3.1
SUBSTRATE
SPECIFICITY
129
4.5.3.2
ENANTIOSELECTIVITY
131
4.6
CONDUSIONS
132
REFERENCES
133
XII
CONTENTS
5
ENZYME
BIOINFORMATICS
139
KAY
HOFMANN
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.8
INTRODUCTION
139
PROTEIN
COMPARISON
140
SEQUENCE
COMPARISON
VERSUS
STRUCTURE
COMPARISON
140
SUBSTITUTION
MATRICES
IN
SEQUENCE
COMPARISONS
141
PROFILE
METHODS
142
DATABASE
SEARCHES
144
ENZYME-SPECIFIC
CONSERVATION
PATTERNS
145
GENERAL
CONSERVATION
PATTERNS
145
ACTIVE
SITE
CONSERVATION
PATTERNS
146
METAL
BINDING
CONSERVATION
PATTERNS
146
MAKING
USE
OF
CONSERVATION
PATTERNS
148
MODULAR
ENZYMES
149
THE
DOMAIN
CONCEPT
IN
STRUCTURE
AND
SEQUENCE
149
A
CLASSIFICATION
OF
MODULAR
ENZYMES
150
INHIBITORY
DOMAINS
151
ENZYME
DATABASES
AND
OTHER
INFORMATION
SOURCES
151
E.
C.
NOMENDATURE
AND
ENZYME
DATABASE
152
BRENDA
152
KEGG
AND
LIGAND
DATABASE
153
UM-BBD
153
STRUCTURAL
DATABASES
153
METALLOPROTEIN
DATABASES
154
DATABASES
FOR
SELECTED
ENZYME
CLASSES
154
PROTEIN
DOMAIN
AND
MOTIF
DATABASES
154
PROSITE
155
PFAM
156
OTHER
RELATED
DATABASES
156
ENZYME
GENOMICS
156
ORTHOLOG
SEARCH
157
PARALOG
SEARCH
157
NON-HOMOLOGY
BASED
METHODS
159
OUTLOOK
159
REFERENCES
161
6
IMMOBILIZATION
OF
ENZYMES
163
JAMES
LALONDE
6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.3
INTRODUCTION
163
METHODS
OF
IMMOBILIZATION
164
NON-COVALENT
ADSORPTION
165
COVALENT
ATTACHMENT
168
CARRIERS
FOR
ENZYME
IMMOBILIZATION
170
ENTRAPMENT
AND
ENCAPSULATION
171
CONTENTS
IXIII
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
CROSS-LINKING
175
PROPERTIES
OF
IMMOBILIZED
BIOCATALYSTS
175
MASS
TRANSFER
EFFECTS
176
PARTITION
176
STABILITY
177
ACTIVITY
OF
IMMOBILIZED
ENZYMES
177
NEW
DEVELOPMENTS
AND
OUTLOOK
178
CROSS-LINKED
ENZYME
CRYSTALS
(CLEC)
179
SOL-GEL
181
CONTROLLED
SOLUBILITY
"
SMART
POLYMERS
"
181
REFERENCES
182
7
REACTION
ENGINEERING
FOR
ENZYME-CATALYZED
BIOTRANSFORMATIONS
185
MANFRED
BISELLI,
UDO
KRAGL
AND
CHRISTIAN
WANDREY
7.1
7.2
7.3
7.3.1
7.3.2
7.3.2.1
73.2.2
INTRODUCTION
185
STEPS
OF
PROCESS
OPTIMIZATION
186
INVESTIGATION
OF
THE
REACTION
SYSTEM
190
PROPERTIES
OF
THE
ENZYME
190
PROPERTIES
OF
THE
REACTION
SYSTEM
193
THERMODYNAMIC
EQUILIBRIUM
OF
THE
REACTION
193
COMPLEX
REACTION
SYSTEMS:
THE
EXISTENCE
OF
PARALLEL
AND
CONSECUTIVE
REACTIONS
195
73.23
73.2.4
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.2.6
7.4.2.7
OTHER
PROPERTIES
OF
THE
REACTION
SYSTEM
204
APPLICATION
OF
ORGANIC
SOLVENTS
204
INVESTIGATION
OF
ENZYME
KINETICS
208
METHODS
OF
PARAMETER
IDENTIFICATION
209
THE
KINETICS
OF
ONE-ENZYME
SYSTEMS
210
THE
MICHAELIS-MENTEN
KINETICS
210
COMPETITIVE
INHIBITION
214
NON-COMPETITIVE
INHIBITION
215
UNCOMPETITIVE
INHIBITION
216
REVERSIBILITY
OF
ONE-SUBSTRATE
REACTIONS
217
TWO-SUBSTRATE
REACTIONS
218
KINETICS
OF
AMINOACYLASE
AS
EXAMPLE
OF
A
RANDOM
UNI-BI
MECHANISM
223
7.4.3
7.5
7.5.1
7.5.2
7.5.2.1
KINETICS
OF
MULTIPLE
ENZYME
SYSTEMS
230
ENZYME
REACTORS
232
BASIC
REACTION
ENGINEERING
ASPECTS
232
REACTORS
FOR
SOLUBLE
ENZYMES
238
REACTOR
OPTIMIZATION
EXEMPLIFIED
BY
THE
ENZYME
MEMBRANE
REACTOR
241
7.5.2.2
7.5.3
7.5.4
CONTROL
OF
CONVERSION
IN
A
CONTINUOUSLY
OPERATED
EMR
249
REACTOR
SYSTEMS
FOR
IMMOBILIZED
ENZYMES
250
REACTION
TECHNIQUES
FOR
ENZYMES
IN
ORGANIC
SOLVENT
251
XIVI
CONTENTS
7.6
CONCLUSIONS
AND
OUTLOOK
253
REFERENCES
254
8
ENZYMIC
CONVERSIONS
IN
ORGANIC
AND
OTHER
LOW-WATER
MEDIA
259
PETER
HALLING
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.3
8.3.1
8.3.2
8.3.3
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.7
8.7.1
8.7.2
8.7.3
INTRODUCTION
259
ENZYME
FORM
260
LYOPHILIZED
POWDERS
260
IMMOBILIZED
ENZYMES
261
CROSS-LINKED
CRYSTALS
261
DIRECT
PRECIPITATION
IN
ORGANIC
SOLVENTS
262
ADDITIVES
IN
CATALYST
POWDERS
262
SOLUBILIZED
ENZYMES
263
RESIDUAL
WATER
LEVEL
264
FIXING
INITIAL
WATER
ACTIVITY
OF
REACTION
COMPONENTS
266
CONTROL
OF
WATER
ACTIVITY
DUERING
REACTION
269
"
WATER
MIMICS
"
273
TEMPERATURE
274
SUBSTRATE
(STARTING
MATERIAL)
CONCENTRATIONS
274
SOLVENT
CHOICE
276
EFFECTS
ON
EQUILIBRIUM
POSITION
276
"
SOLVENT
EFFECTS
"
THAT
REALLY
ARE
NOT
276
SOLVENT
POLARITY
TREND
AND
RECOMMENDED
CHOICES
277
SOLVENT
PARAMETERS
279
SOLVENT
EFFECTS
ON
SELECTIVITY
280
NO
SOLVENT
OR
LITTLE
SOLVENT
SYSTEMS
280
ACID-BASE
CONDITIONS
281
PH
MEMORY
281
PROCESSES
ERASING
PH
MEMORY
282
SYSTEMS
FOR
ACID-BASE
BUFFERING
283
REFERENCES
285
9
ENZYMATIC
KINETIC
RESOLUTION
287
JONATHAN
M.J.
WILLIAMS,
REBECCA
J.
PARKER,
AND
CLAUDIA
NERI
9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.4
INTRODUCTION
287
ALCOHOLS
AND
THEIR
DERIVATIVES
288
CYANOHYDRINS
289
OTHER
READILY
RACEMIZED
SUBSTRATES
290
ENZYME
AND
METAL
COMBINATIONS
293
CARBOXYLIC
ACIDS
AND
THEIR
DERIVATIVES
297
READILY
ENOLIZED
CARBOXYLIC
ACID
DERIVATIVES
297
AMINO-ESTERS
AND
RELATED
COMPOUNDS
301
REACTIONS
OF
CYCLIC
AMINO
ACID
DERIVATIVES
302
REDUCTION
OF
SS-KETOESTERS
307
CONTENTS
IXV
9.5
CONDUSION
309
REFERENCES
310
10
ENZYMES
FROM
EXTREME
THERMOPHILIC
AND
HYPERTHERMOPHILIC
ARCHAEA
AND
BACTERIA
313
COSTANZO
BERTOLDO
AND
CARABED
ANTRANIKIAN
10.1
10.2
10.2.1
10.2.1.1
10.2.1.2
10.2.1.3
10.3
10.3.1
10.4
10.4.1
10.5
10.6
10.6.1
10.7
INTRODUCTION
313
STARCH-PROCESSING
ENZYMES
315
THERMOACTIVE
AMYLOLYTIC
ENZYMES
316
HEAT-STABLE
AMYLASES
AND
GLUCOAMYLASES
316
A-GLUCOSIDASES
317
THERMOACTIVE
PULLULANASES
AND
CGTASES
317
CELLULOSE-HYDROLYZING
ENZYMES
0321
THERMOSTABLE
CELLULASES
321
XYLAN-DEGRADING
ENZYMES
324
THERMOSTABLE
XYLANASES
324
CHITIN
DEGRADATION
325
PROTEOLYTIC
ENZYMES
326
STABLE
PROTEASES
327
INTRACELLULAR
ENZYMES
329
REFERENCES
331
VOLUME
II
11
HYDROLYSIS
AND
FORMATION
OF
C-O
BONDS
335
11.1
HYDROLYSIS
AND
FORMATION
OF
CARBOXYLID
ACID
ESTERS
335
HANS-JOACHIM
CAIS
AND
FRITZ
THEIL
11.1.1
11.1.1.1
11.1.1.2
11.1.1.3
HYDROLYSIS
AND
FORMATION
OF
CARBOXYLIC
ACID
ESTERS
351
HYDROLYSIS
OF
CARBOXYLIC
ACID
ESTERS
351
FORMATION
OF
CARBOXYLIC
ESTERS
472
INTER
AND
INTRAMOLECULAR
ALCOHOLYSIS
545
REFERENCES
574
11.2
HYDROLYSIS
OF
EPOXIDES
579
KURT
FABER
AND
ROMANO
V.
A.
ORRU
11.2.1
11.2.1.1
11.2.1.2
11.2.1.3
11.2.2
11.2.2.1
11.2.2.2
11.2.2.3
11.2.3
11.2.3.1
EPOXIDE
HYDROLASES
IN
NATURE
581
ISOLATION
AND
CHARACTERIZATION
OF
EPOXIDE
HYDROLASES
582
STRUCTURE
AND
MECHANISM
OF
EPOXIDE
HYDROLASES
584
SCREENING
FOR
MICROBIAL
EPOXIDE
HYDROLASES
587
MICROBIAL
HYDROLYSIS
OF
EPOXIDES
588
FUNGAL
ENZYMES
588
BACTERIAL
ENZYMES
590
YEAST
ENZYMES
591
SUBSTRATE
SPECIFICITY
AND
SELECTIVITY
592
ASYMMETRIZATION
OF
WESO-EPOXIDES
592
XVII
CONTENTS
11.2.3.2
RESOLUTION
OF
RACEMIC
EPOXIDES
592
11.2.3.3
DERACEMIZATION
METHODS
596
11.2.4
USE
OF
NON-NATURAL NUCLEOPHILES
599
11.2.5
APPLICATIONS
TO
ASYMMETRIE
SYNTHESIS
600
11.2.6
SUMMARY
AND
OUTLOOK
604
REFERENCES
605
11.3
HYDROLYSIS
AND
FORMATION
OF
GLYCOSIDIC
BONDS
609
CHI-HUEY
WONG
1.3.1
INTRODUCTION
609
11.3.2
GLYCOSYLTRANSFERASES
OF
THE
LELOIR
PATHWAY
611
11.3.2.1
SYNTHESIS
OF
SUGAR
NUDEOSIDE
PHOSPHATES
613
11.3.2.2
SUBSTRATE
SPECIFICITY
AND
SYNTHETIC
APPLICATIONS
OF
GLYCOSYLTRANSFERASES
619
11.3.2.3
IN
SITU
COFACTOR
REGENERATION
626
11.3.2.4
CLONING
AND
EXPRESSION
OF
GLYCOSYLTRANSFERASES
628
11.3.3
NON-LELOIR
GLYCOSYLTRANSFERASES:
TRANSFER
OF
GLYCOSYL
DONORS
FROM
GLYCOSYL
PHOSPHATES
AND
GLYCOSIDES
631
11.3.4
GLYCOSIDASES
633
11.3.4.1
EQUILIBRIUM-CONTROLLED
SYNTHESIS
633
11.3.4.2
KINETICALLY
CONTROLLED
SYNTHESIS
634
11.3.4.3
SELECTIVITY
634
11.3.5
SYNTHESIS
OF
N-GLYCOSIDES
637
11.3.5.1
NUDEOSIDE
PHOSPHORYLASE
638
11.3.5.2
NAD
HYDROLASE
639
11.3.6
BIOLOGICAL
APPLICATIONS
OF
SYNTHETIC
GLYCOCONJUGATES
639
11.3.6.1
GLYCOSIDASE
AND
GLYCOSYL
TRANSFERASE
INHIBITORS
639
11.3.6.2
GLYCOPROTEIN
REMODELING
641
11.3.7
FUTURE
OPPORTUNITIES
642
REFERENCES
643
11.4
NATURAL
POLYSACCHARIDE-DEGRADING
ENZYMES
653
CONSTANZO
BERTOLDO
AND
CARABED
ANTRANIKIAN
11.4.1
INTRODUCTION
653
11.4.2
STARCH
653
11.4.2.1
CLASSIFICATION
OF
STARCH-DEGRADING
ENZYMES
654
11.4.2.2
A-AMYLASE
(L,4-A-D-GLUCAN,4-GLUCANHYDROLASE,
E.C.
3.2.1.1)
655
11.4.2.3
SS-AMYLASE
(1,4-A-D-GLUCAN
MALTOHYDROLASE,
E.C.
3.2.1.2)
656
11.4.2.4
GLUCOAMYLASES
(1,4-A-D-GLUCANGLUCOHYDROLASE,
E.C.
3.2.1.3)
656
11.4.2.5
A-GLUCOSIDASE
(CT-3-GLUCOSIDE
GLUCOHYDROLASE,
E.C.
3.2.1.20)
657
11.4.2.6
ISOAMYLASE
(GLYCOGEN
6-GLUCANOHYDROLASE,
E.C.
3.2.1.68)
657
11.4.2.7
PULLULANASE
TYPE
I
(A-DEXTRIN
6-GLUCANOHYDROLASE,
E.C.
3.2.1.41)
657
11.4.2.8
PULLULANASE
TYPE
II
OR
AMYLOPULLULANASE
658
11.4.2.9
PULLULAN
HYDROLASES
(TYPE
I,
NEOPULLULANASE;
TYPE
II,
ISOPULLULANASE,
E.
C.
3.2.1.57,
PULLULAN
HYDROLASE
TYPE
III)
659
11.4.2.10
CYCLODEXTRIN
GLYCOLSYLTRANSFERASE
(L,4-A-D-GLUCAN4-A-D-(L,4-A-D
GLUCANO)-TRANSFERASE,
E.C.
2.4.1.19)
659
CONTENTS
IXVII
11.4.2.11
BIOTECHNOLOGICAL
APPLICATIONS
OF
STARCH-DEGRADING
ENZYMES
659
11.4.3
CELLULOSE
661
11.4.3.1
CELLULOSE-DEGRADING
ENZYME
SYSTEMS
663
11.4.3.2
ENDOGLUCANASE
(1,4-SS-D-GLUCAN-GLUCANOHYDROLASE,
E.C.
3.2.1.4)
663
11.4.3.3
CELLOBIOHYDROLASE
(1,4-SS-D-GLUCAN
CELLOBIOHYDROLASE,
E.C.
3.2.1.91)
663
11.4.3.4
SS-GLUCOSIDASE
(SS-D-GLUCOSIDE
GLUCOHYDROLASE,
E.C.
3.2.1.21)
664
11.4.3.5
FUNGAL
AND
BACTERIAL
CELLULASES
664
11.4.3.6
STRUCTURE
AND
SYNERGISTIC
EFFECT
OF
CELLULASES
665
11.4.4
XYLAN
667
11.4.4.1
THE
XYLANOLYTIC
ENZYME
SYSTEM
668
11.4.4.2
ENDOXYLANASE
(1,4-SS-D-XYLANXYLANOHYDROLASE,
E.C.
3.2.1.8)
670
11.4.4.3
SS-XYLOSIDASE
(SS-D-XYLOSIDEXYLOHYDROLASE,
E.C.
3.2.1.37)
670
11.4.4.4
A-L-ARABINOFURANOSIDASE
(E.C.
3.2.1.55)
671
11.4.4.5
A-GLUCURONIDASE
(E.C.
3.2.1.136)
671
11.4.4.6
ACETYL
XYLAN
ESTERASE
(E.C.
3.1.1.6)
672
11.4.4.7
MECHANISM
OF
ACTION
OF
ENDOXYLANASE
672
11.4.4.8
BIOTECHNOLOGICAL
APPLICATIONS
OFXYLANASES
672
11.4.5
PECTIN
673
11.4.5.1
CLASSIFICATION
OF
PECTIC
SUBSTANCES
675
11.4.5.2
PECTOLYTIC
ENZYMES
675
11.4.5.3
CLASSIFICATION
OF
PECTOLYTIC
ENZYMES
676
11.4.5.4
PROTOPECTINASE
676
11.4.5.5
PECTIN
METHYLESTERASE
677
11.4.5.6
PECTIN
AND
POLYGALACTURONATE
DEPOLYMERIZING
ENZYMES
677
11.4.5.7
PECTIN
AND
POLYGALACTURONATE
HYDROLASE
678
11.4.5.8
PECTIN
AND
POLYGALACTURONATE
LYASE
679
11.4.5.9
BIOTECHNOLOGICAL
APPLICATIONS
OF
PECTOLYTIC
ENZYMES
680
REFERENCES
681
11.5
ADDITION
OF
WATER
TO
C=C
BONDS
686
MARCEL
WUBBOLTS
11.5.1
ADDITION
OF
WATER
TO
ALKENOIC
ACIDS
686
11.5.2
ADDITION
OF
WATER
TO
ALKENE-DIOIC
ACIDS
687
11.5.2.1
L
-
AND
D-MALIC
ACID
687
11.5.1.2
SUBSTITUTED
MALIC
ACIDS
688
11.5.3
ADDITION
OF
WATER
TO
ALKENE-TRICARBOXYLIC
ACIDS
688
11.5.3.1
CITRIC
ACID
AND
DERIVATIVES
688
11.5.4
ADDITION
OF
WATER
TO
ALKYNOIC
ACIDS
690
11.5.5
ADDITION
OF
WATER
TO
ENOLS
690
11.5.5.1
CARBOHYDRATES:
ADDITION
OF
WATER
TO
2-KETO-3-DEOXYSUGARS
690
11.5.5.2
ADDITION
/
ELIMINATION
OF
WATER
WITH
OTHER
ENOLS
691
11.5.6
ADDITION
OF
WATER
TO
UNSATURATED
FATTY
ACIDS
693
11.5.6.1
COA
AND
ACP
COUPLED
FATTY
ACID
HYDRATASES
693
11.5.6.2
HYDRATASES
ACTING
ON
FREE
FATTY
ACIDS
695
11.5.7
ADDITION
OF
WATER
TO
STEROIDS
695
REFERENCES
696
XVIII
CONTENTS
12
HYDROLYSIS
AND
FORMATION
OF
C-N
BONDS
699
12.1
HYDROLYSIS
OF
NITRILES
699
BIRGIT
SCHULZE
12.1.1
INTRODUCTION
699
12.1.2
TYPES
OF
NITRILE
HYDROLYZING
ENZYMES
700
12.1.2.1
ENZYMATIC
HYDROLYSIS
OF
ORGANIC
NITRILES
700
12.1.2.2
ENZYMATIC
HYDROLYSIS
OF
CYANIDE
702
12.1.3
EXAMPLES
OF
ENZYMATIC
NITRILE
HYDROLYSIS
703
12.1.3.1
ENANTIOSELECTIVE
HYDROLYSIS
OF
NITRILES
703
12.1.3.2
MONOHYDROLYSIS
OF
DINITRILES
705
12.1.3.3
SUBSTRATE
AND
PRODUCT
INHIBITION
OF
NITRILE
HYDROLYSIS
708
12.1.3.4
ACTIVATION
AND
STABILIZATION
OF
NITRILE
HYDRATASES
710
12.1.3.5
NITRILE
HYDROLYSIS
IN
ORGANIC
SOLVENTS
710
12.1.3.6
LARGE
S
CALE
PRODUCTION
OF
ACRYLAMIDE
711
12.1.4
AVAILABILITY
AND
INDUSTRIAL
FUTURE
OF
NITRILE
HYDROLYZING
BIOCATALYSTS
713
REFERENCES
713
12.2
FORMATION
AND
HYDROLYSIS
OF
AMIDES
716
BIRGIT
SCHULZE
AND
ERIK
DE
VROOM
12.2.1
INTRODUCTION
716
12.2.2
ENZYMATIC
FORMATION
OF
AMIDES
716
12.2.3
ENZYMATIC
ENANTIOSELECTIVE
HYDROLYSIS
OF
AMIDES
719
12.2.3.1
HYDROLYSIS
OF
CARBOXYLIC
AMIDES
719
12.2.3.2
HYDROLYSIS
OF
AMINO
ACID
AMIDES
720
12.2.3.3
HYDROLYSIS
OF
CYCLIC
AMIDES
727
12.2.4
SELECTIVE
CLEAVAGE
OF
THE
C-TERMINAL
AMIDE
BOND
728
12.2.5
AMIDASE
CATALYZED
HYDROLYTIC
AND
SYNTHETIC
PROCESSES
IN
THE
PRODUCTION
OF
SEMI-SYNTHETIC
ANTIBIOTICS
729
12.2.5.1
ENZYMATIC
PRODUCTION
OF
6-APA,
7-ADCA
AND
7-ACA
USING
AMIDASES:
HYDROLYTIC
PROCESSES
730
12.2.5.2
A
NEW
FERMENTATION-BASED
BIOCATALYTIC
PROCESS
FOR
7-ADCA
735
12.2.5.3
ENZYMATIC
FORMATION
OF
SEMI-SYNTHETIC
ANTIBIOTICS:
SYNTHETIC
PROCESSES
735
12.2.6
CONCLUSIONS
AND
FUTURE
PROSPECTS
737
REFERENCES
738
12.3
HYDROLYSIS
OF
N-ACYLAMINO
ACIDS
741
ANDREAS
S.
BOMMARIUS
12.3.1
INTRODUCTION
741
12.3.2
ACYLASE
I
(N-ACYLAMINO
ACID
AMIDOHYDROLASE,
E.C.
3.5.1.4.)
742
12.3.2.1
GENES,
SEQUENCES,
STRUCTURES
743
12.3.2.2
SUBSTRATE
SPECIFICITY
744
12.3.2.3
STABILITY
OF
ACYLASES
746
12.3.2.4
THERMODYNAMICS
AND
MECHANISM
OF
THE
ACYLASE-CATALYZED
REACTION
748
12.3.3
ACYLASE
II
(N-ACYL-L-ASPARTATE
AMIDOHYDROLASE,
ASPARTOACYLASE,
E.C.
3.5.1.15.)
749
CONTENTS
IXIX
12.3.4
12.3.5
12.3.6
12.3.7
PROLINE
ACYLASE
(N-ACYL-I-PROLINE
AMIDOHYDROLASE)
752
DEHYDROAMINO
ACID
ACYLASES
753
D-SPECIFIC
AMINOACYLASES
754
ACYLASE
PROCESS
ON
A
LARGE
SCALE
757
REFERENCES
758
12.4
HYDROLYSIS
AND
FORMATION
OF
HYDANTOINS
761
MARKUS
PIETZSCH
AND
CHRISTOPH
SYLDATK
12.4.1
CLASSIFICATION
AND
NATURAL
OCCURRENCE
OF
HYDANTOIN
CLEAVING
AND
RELATED
ENZYMES
761
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
D-HYDANTOINASES
-
SUBSTRATE
SPECIFICITY
AND
PROPERTIES
773
NN-CARBAMOYLASES
-
SUBSTRATE
SPECIFICITY
AND
PROPERTIES
777
L-HYDANTOINASES
-
SUBSTRATE
SPECIFICITY
AND
PROPERTIES
784
R-N-CARBAMOYLASES
-
SUBSTRATE
SPECIFICITY
AND
PROPERTIES
786
HYDANTOIN
RACEMASES
792
CONCLUSIONS
794
REFERENCES
796
12.5
HYDROLYSIS
AND
FORMATION
OF
PEPTIDES
800
HANS-DIETER
JAKUBKE
12.5.1
12.5.2
12.5.2.1
12.5.2.2
12.5.3
12.5.3.1
12.5.3.2
12.5.3.3
12.5.3.4
12.5.3.5
12.5.3.6
12.5.3.7
12.5.4
INTRODUCTION
800
HYDROLYSIS
OF
PEPTIDES
801
PEPTIDE-CLEAVING
ENZYMES
801
IMPORTANCE
OF
PROTEOLYSIS
813
FORMATION
OF
PEPTIDES
818
TOOLS
FOR
PEPTIDE
SYNTHESIS
818
CHOICE
OF
THE
IDEAL
ENZYME
822
PRINCIPLES
OF
ENZYMATIC
SYNTHESIS
823
MANIPULATIONS
TO
SUPPRESS
COMPETITIVE
REACTIONS
831
APPROACHES
TO
IRREVERSIBLE
FORMATION
OF
PEPTIDE
BOND
840
IRREVERSIBLE
C-N
LIGATIONS
BY
MIMICKING
ENZYME
SPECIFICITY
842
PLANNING
AND
PROCESS
DEVELOPMENT
OF
ENZYMATIC
PEPTIDE
SYNTHESIS
851
CONCLUSION
AND
OUTLOOK
858
REFERENCES
859
12.6
ADDITION
OF
AMINES
TO
C=C
BONDS
866
MARCEL
WUBBOLTS
12.6.1
12.6.1.1
12.6.1.2
12.6.1.3
12.6.1.4
12.6.1.5
12.6.1.6
12.6.2
12.6.2.1
ADDITION
OF
AMMONIA
TO
PRODUCE
AMINO
ACIDS
866
ASPARTIC
ACID
866
ASPARTIC
ACID
DERIVATIVES
868
HISTIDINE
AMMONIA
LYASE
869
PHENYLALANINE,
TYROSIN
AND
R-DOPA
870
SERINE
AND
THREONINE
DEAMINASES
871
ORNITHINE
CYCLODEAMINASE
871
AMMONIA
LYASES
THAT
ACT
ON
OTHER
AMINES
871
ELIMINATION
OF
AMMONIA
FROM
ETHANOLAMINE
871
REFERENCES
872
XXI
CONTENTS
12.7
TRANSAMINATIONS
873
J.
DAVID
ROZZELL
AND
ANDREAS
S.
BOMMARIUS
12.7.1
12.7.2
12.7.2.1
12.7.2.2
12.7.2.3
INTRODUCTION
873
DESCRIPTION
OF
TRANSAMINASES
875
HOMOLOGY
AND
EVOLUTIONARY
SUBGROUPS
OF
AMINOTRANSFERASES
875
MECHANISM
OF
TRANSAMINATION
875
PROTEIN
ENGINEERING
AND
DIRECTED
EVOLUTION
WITH
AMINOTRANSFERASES
876
12.7.3
12.7.3.1
12.7.3.2
12.7.3.3
12.7.4
12.7.5
12.7.6
12.7.7
12.7.8
USE
OF
AMINOTRANSFERASES
IN
BIOCATALYTIC
REACTIONS
878
SYNTHESIS
OF
A-I-AMINO
ACIDS
878
SYNTHESIS
OF
ENANTIOMERICALLY
PURE
AMINES
880
OTHER
PREPARATIVE
APPLICATIONS
OF
AMINOTRANSFERASES
881
DRIVING
THE
REACTION
TO
COMPLETION
884
PRODUCTION
OF
I-AMINO
ACIDS
USING
IMMOBILIZED
TRANSAMINASES
885
D-AMINO
ACID
TRANSFERASES
889
SYNTHESIS
OF
LABELED
AMINO
ACIDS
891
AVAILABILITY
OF
ENZYME
892
REFERENCES
892
13
FORMATION
AND
CLEAVAGE
OF
P-O
BONDS
895
GEORGE
M.
WHITESIDES
13.1
13.1.1
13.1.2
13.2
13.2.1
13.2.1.1
13.2.1.2
13.2.2
13.2.2.1
13.2.2.2
INTRODUCTION
895
ENZYMES
FORMING
OR
CLEAVING
PHOSPHOROUS-OXYGEN
BONDS
896
BIOLOGICAL
PHOSPHORYLATING
AGENTS
899
PHOSPHORYLATION
901
REGENERATION
OF
NUCLEOSIDE
TRIPHOSPHATES
901
REGENERATION
OF
ATP
FROM
ADP
AND
AMP
902
REGENERATION
OF
OTHER
NUCLEOSIDE
TRIPHOSPHATES
906
APPLICATIONS
907
PHOSPHORYLATIONS
WITH
ATP
AS
A
COFACTOR
907
P-0
BOND
FORMATION
WITH
OTHER
NUCLEOSIDE
TRIPHOSPHATES
THAN
ATP
909
13.2.2.3
13.2.3
OTHER
PHOSPHORYLATING
AGENTS
910
TABLES
CONTAINING
TYPICAL
EXAMPLES
ORDERED
ACCORDING
TO
THE
CLASSES
OF
COMPOUNDS
918
13.3
13.3.1
13.3.2
13.3.3
13.3.3.1
13.3.3.2
13.3.4
CLEAVAGE
OF
P
-
O
BONDS
918
HYDROLYSIS
OF
PHOSPHATE
AND
PYROPHOSPHATE
MONOESTERS
919
HYDROLYSIS
OF
S
AND
N-SUBSTITUTED
PHOSPHATE
MONOESTER
ANALOGS
920
HYDROLYSIS
OF
PHOSPHATE
AND
PHOSPHONATE
DIESTERS
922
NUCLEIC
ACIDS
AND
THEIR
ANALOGS
922
OTHER
PHOSPHATE
AND
PHOSPHONATE
DIESTERS
922
OTHER
P-0
BOND
CLEAVAGES
923
REFERENCES
926
CONTENTS
IXXI
14
FORMATION
OF
C-C
BONDS
931
CHI-HUEY
WONG
14.1
14.1.1
14.1.1.1
14.1.1.2
ALDOL
REACTIONS
931
DHAP-UTILIZING
ALDOLASES
931
FRUCTOSE
1,6-DIPHOSPHATE
(FDP)
ALDOLASE
(E.
C.
4.1.2.13)
931
FUCULOSE
1-PHOSPHATE
(FUC
1-P)
ALDOLASE
(E.C.
4.1.2.17),
RHAMNULOSE
1-PHOSPHATE
(RHA
1-P)
ALDOLASE
(E.C.
4.1.2.19)
AND
RAGATOSE
1,6-DIPHOSPHATE
(TDP)
ALDOLASE
939
14.1.1.3
14.1.2
14.1.2.1
SYNTHESIS
OF
DIHYDROXYACETONE
PHOSPHATE
(DHAP)
943
PYRUVATE/PHOSPHOENOLPYRUVATE-UTILIZING
ALDOLASES
944
N-ACETYLNEURAMINATE
(NEUAC)
ALDOLASE
(E.C.
4.1.3.3)
AND
NEUAC
SYNTHETASE
(E.C.
4.1.3.19)
944
14.1.2.2
3-DEOXY-D-MANNO-2-OCTULOSONATE
ALDOLASE
(E.C.
4.1.2.23)
AND
3-DEOXY
D-MANNO-2-OCTULOSONATE
8-PHOSPHATE
SYNTHETASE
(E.
C.
4.1.2.16)
946
14.1.2.3
3-DEOXY-D-ARABINO-2-HEPTULOSONIC
ACID
7-PHOSPHATE
(DAHP)
SYNTHETASE
(E.
C.
4.1.2.15)
947
14.1.2.4
14.1.2.5
14.1.2.6
14.1.3
14.2
14.2.1
14.2.2
14.3
14.4
14.5
14.6
2-KETO-4-HYDROXYGLUTARATE
(KHG)
ALDOLASE
(E.C.
4.1.2.31)
948
2-KETO-3-DEOXY-6-PHOSPHOGLUCONATE
(KDPG)
ALDOLASE
(E.C.
4.1.2.14)
949
2-KETO-3-DEOXY-D-GLUCARATE
(KDG)
ALDOLASE
(E.C.
4.1.2.20)
950
2-DEOXYRIBOSE
5-PHOSPHATE
ALDOLASE
(DERA)
(E.C.
4.1.2.4)
950
KETOL
AND
ALDOL
TRANSFER
REACTIONS
960
TRANSKETOLASE
(TK)
(E.
C.
2.2.1.1)
960
TRANSALDOLASE
(TA)
(E.
C.
2.2.1.2)
962
ACYLOIN
CONDENSATION
962
C-C
BOND
FORMING
REACTIONS
INVOLVING
ACETYLCOA
963
ISOPRENOID
AND
STEROID
SYNTHESIS
965
SS-REPLACEMENT
OF
CHLOROALANINE
966
REFERENCES
966
14.7
ENZYMATIC
SYNTHESIS
OF
CYANOHYDRINS
974
MARTIN
H.
FECHTER
AND
HEIFRIED
CRINGL
14.7.1
14.7.2
14.7.3
14.7.4
14.7.5
14.7.6
14.7.7
14.7.8
14.7.9
THE
OXYNITRILASES
COMMONLY
USED
FOR
PREPARATIVE
APPLICATION
975
OXYNITRILASE
CATALYSED
ADDITION
OF
HCN
TO
ALDEHYDES
976
HNL-CATALYZED
ADDITION
OF
HYDROGEN
CYANIDE
TO
KETONES
978
TRANSHYDROCYANATION
978
EXPERIMENTAL
TECHNIQUES
FOR
HNL-CATALYSED
BIOTRANSFORMATIONS
981
RESOLUTION
OF
RACEMATES
982
FOLLOW-UP
CHEMISTRY
OF
ENANTIOPURE
CYANOHYDRINS
985
SAFE
HANDLING
OF
CYANIDES
985
CONDUSIONS
AND
OUTLOOK
986
REFERENCES
986
XXIII
CONTENTS
VOLUME
III
15
REDUCTION
REACTIONS
991
15.1
REDUCTION
OF
KETONES
991
KAORU
NAKAMURA
AND
TOMOKO
MATSUDA
15.1.1
INTRODUCTION
991
15.1.1.1
ENZYME
CLASSFICATION
AND
REACTION
MECHANISM
991
15.1.1.2
COENZYME
REGENERATION
992
15.1.1.3
FORM
OF
THE
BIOCATALYSTS:
ISOLATED
ENZYME
VS.
WHOLE
CELL
995
15.1.1.4
ORIGIN
OF
ENZYMES
996
15.1.2
STEREOCHEMICAL
CONTROL
997
15.1.2.1
ENANTIOSELECTIVITY
OF
REDUCTION
REACTIONS
997
15.1.2.2
MODIFICATION
OF
THE
SUBSTRATE:
USE
OF
AN
"
ENANTIOCONTROLLING
"
GROUP
998
15.1.2.3
SCREENING
OF
MICROORGANISMS
1000
15.1.2.4
TREATMENT
OF
THE
CELL:
HEAT
TREATMENT
1001
15.1.2.5
TREATMENT
OF
THE
CELL:
AGING
1001
15.1.2.6
TREATMENT
OF
THE
CELL:
HIGH
PRESSURE
HOMOGENIZATION
1002
15.1.2.7
TREATMENT
OF
THE
CELL:
ACETONE
DEHYDRATION
1002
15.1.2.8
CULTIVATION
CONDITIONS
OF
THE
CELL
1003
15.1.2.9
MODIFICATION
OF
REACTION
CONDITIONS:
INCORPORATION
OF
AN
INHIBITOR
1004
15.1.2.10
MODIFICATION
OF
REACTION
CONDITIONS:
ORGANIC-SOLVENT
1005
15.1.2.11
MODIFICATION
OF
REACTION
CONDITIONS:
USE
OF
A
SUPERCRITICAL
SOLVENT
1006
15.1.2.12
MODIFICATION
OF
REACTION
CONDITIONS:
CYCLODEXTRIN
1007
15.1.2.13
MODIFICATION
OF
REACTION
CONDITIONS:
HYDROPHOBIE
POLYMER
XAD
1007
15.1.2.14
MODIFICATION
OF
REACTION
CONDITIONS:
REACTION
TEMPERATURE
1008
15.1.2.15
MODIFICATION
OF
REACTION
CONDITIONS
:
REACTION
PRESSURE
1009
15.1.3
IMPROVEMENT
OF
DEHYDROGENASES
FOR
USE
IN
REDUCTION
REACTIONS
BY
GENETIC METHODS
1010
15.1.3.1
OVEREXPRESSION
OF
THE
ALCOHOL
DEHYDROGENASE
1010
15.1.3.2
ACCESS
TO
A
SINGLE
ENZYME
WITHIN
A
WHOLE
CELL:
USE
OF
RECOMBINANT
CELIS
1011
15.1.3.3.
USE
OF
A
CELL
DEFICIENT
IN
AN
UNDESIRED
ENZYME
1012
15.1.3.4
POINT
MUTATION
FOR
THE
IMPROVEMENT
OF
ENANTIOSELECTIVITY
1012
15.1.3.5
BROADENING
THE
SUBSTRATE
SPECIFICITY
OF
DEHYDROGENASE
BY
MUTATIONS
1012
15.1.3.6
PRODUCTION
OF
AN
ACTIVATED
FORM
OF
AN
ENZYME
BY
DIRECTED
EVOLUTION
1014
15.1.3.7
CHANGE
IN
THE
COENZYME
SPECIFICITY
BY
GENETIC
METHODS:
NADP(H)
SPECIFIC
FORMATE
1014
15.1.3.8
USE
OF
A
MUTANT
DEHYDROGENASE
FOR
THE
SYNTHESIS
OF
4-AMINO-2-HYDROXY
ACIDS
1014
15.1.3.9
CATALYTIC
ANTIBODY
1015
15.1.4
REDUCTION
SYSTEMS
WITH
WIDE
SUBSTRATE
SPECIFICITY
1016
CONTENTS
|
XXIII
15.1.4.1
BAKERS
'
YEAST
1016
15.1.4.2
RODOCOCCUS
ERYTHROPOLIS
1016
15.1.4.3
PSEUDOMONAS
SP.
STRAIN
PED
AND
LACTOBACILLUS
KEFIR
1017
15.1.4.4
THERMOANAEROBIUM
BROCKII
1018
15.1.4.5
GEOTRICHUM
CANDIDUM
1019
15.1.5
REDUCTION
OF
VARIOUS
KETONES
1021
15.1.5.1
REDUCTION
OF
FLUOROKETONES
1021
15.1.5.2
REDUCTION
OF
FLUOROKETONES
CONTAINING
SULFUR
FUNCTIONALITIES
1024
15.1.5.3
REDUCTION
OF
CHLOROKETONES
1025
15.1.5.4
REDUCTION
OF
KETONES
CONTAINING
NITROGEN,
OXYGEN,
PHOSPHORUS
AND
SULFUR
1028
15.1.5.5
REDUCTION
OFDIKETONES
1028
15.1.5.6
REDUCTION
OF
DIARYL
KETONES
1029
15.1.5.7
DIASTEREOSLECTIVE
REDUCTIONS
(DYNAMIC
RESOLUTION)
1030
15.1.5.8
CHEMO-ENZYMATIC
SYNTHESIS
OF
BIOAKTIVE
COMPOUNDS
1031
15.2
REDUCTION
OF
VARIOUS
FUNCTIONALITIES
1033
15.2.1
REDUCTION
OF
ALDEHYDES
1033
15.2.2
REDUCTION
OF
PEROXIDES
TO
ALCOHOLS
1034
15.2.3
REDUCTION
OF
SULFOXIDES
TO
SULFIDES
1034
15.2.4
REDUCTION
OF
AZIDE
AND
NITRO
COMPOUNDS
TO
AMINES
1035
15.2.5
REDUCTION
OF
CARBON-CARBON
DOUBLE
BONDS
1036
15.2.6
TRANSFORMATION
OF
A-KETO
ACID
TO
AMINE
1037
15.2.7
REDUCTION
OF
CARBON
DIOXIDE
1038
15.2.7.1
REDUCTION
OF
CO2
TO
METHANOL
1038
15.2.7.2
REDUCTIVE
FIXATION
OFCO2
1039
REFERENCES
1040
15.3
REDUCTION
OF
C=N
BONDS
1047
ANDREAS
S.
BOMMARIUS
15.3.1
INTRODUCTION
1047
15.3.2
STRUCTURAL
FEATURES
OF
AMINO
ACID
DEHYDROGENASES
(AADHS)
1049
15.3.2.1
SEQUENCES
AND
STRUCTURES
1050
15.3.3
THERMODYNAMICS
AND
MECHANISM
OF
ENZYMATIC
REDUCTIVE
AMINATION
1050
15.3.3.1
THERMODYNAMICS
1050
15.3.3.2
MECHANISM,
KINETICS
1051
15.3.4
INDIVIDUAL
AMINO
ACID
DEHYDROGENASES
1052
15.3.4.1
LEUCINE
DEHYDROGENASE
(LEUDH,
E.C.
1.4.1.9.)
1052
15.3.4.2
ALANINE
DEHYDROGENASE
(ALADH,
E.C.
1.4.1.1.)
1053
15.3.4.3
GLUTAMATE
DEHYDROGENASE
(GLUDH,
E.C.
1.4.1.2-4)
1054
15.3.4.4
PHENYLALANINE
DEHYDROGENASE
(PHEDH,
E.C.
1.4.1.20)
1054
15.3.5
SUMMARY
OF
SUBSTRATE
SPECIFICITIES
1056
15.3.6
PROCESS
TECHNOLOGY:
COFACTOR
REGENERATION
AND
ENZYME
MEMBRANE
REACTOR
(EMR)
1058
15.3.6.1
REGENERATION
OFNAD(P)(H)
COFACTORS
1058
15.3.6.2
SUMMARY
OFPROCESSING
TO
AMINO
ACIDS
1060
REFERENCES
1061
XXIV
CONTENTS
16
OXIDATION
REACTIONS
1065
16.1
OXYGENATION
OF
C-H
AND
C=C
BONDS
1065
SABINE
FLITSCH
16.1.1
INTRODUCTION
1065
16.1.2
HYDROXYLATING
ENZYMES
1066
16.1.2
HYDROXYLATING
ENZYMES
1068
16.1.4
HYDROXYLATION
OF
NON-ACTIVATED
CARBON
ATOMS
1069
16.1.4.1
HYDROXYLATION
OF
MONOTERPENES
1069
16.1.4.1
HYDROXYLATION
OF
MONOTERPENES
1075
16.1.4.3
HYDROXYLATION
OF
STEROIDS
1078
16.1.4.4
MISCELLANEOUS
COMPOUNDS
1079
16.1.5
EPOXIDATION
OF
OLEFINS
1084
16.1.5.1
EPOXIDATION
OF
STRAIGHT-CHAIN
TERMINAL
OLEFINS
1084
16.1.5.2
SHORT-CHAIN
ALKENES
1088
16.1.5.3
TERPENES
1090
16.1.5.4
CYCLIC
SESQUITERPENES
1096
16.1.6
CONDUSIONS,
CURRENT
AND
FUTURE
TRENDS
1097
16.1.7
CIS
HYDROXYLATION
OF
AROMATIC
DOUBLE
BONDS
1099
16.1.7.1
INTRODUCTION
1099
16.1.7.2
PREPARATION
OF
CIS
DIHYDRODIOLS
1100
REFERENCES
1103
16.2
OXIDATION
OF
ALCOHOLS
1108
ANDREAS
SCHMID,
FRANK
HOLLMANN,
AND
BRUNO
BUEHLER
16.2.1
INTRODUCTION
1108
16.2.2
DEHYDROGENASES
AS
CATALYSTS
1108
16.2.2.1
REGENERATION
OF
OXIDIZED
NICOTINAMIDE
COENZYMES
1108
16.2.2.2
DEHYDROGENASES
AS
REGENERATION
ENZYMES
1109
16.2.2.3
MOLECULAR
OXYGEN
AS
TERMINAL
ACCEPTOR
1111
16.2.2.4
ELECTROCHEMICAL
REGENERATION
1112
16.2.2.5
PHOTOCHEMICAL
REGENERATION
1114
16.2.2.6
OXIDATIONS
CATALYZED
BY
ALCOHOL
DEHYDROGENASE
FROM
HORSE
LIVER
(HLADH)
1115
16.2.2.7
ALCOHOL
DEHYDROGENASE
FROM
YEAST
(YADH)
1120
16.2.2.8
ALCOHOL
DEHYDROGENASE
FROM
THERMOANAEROBIUM
BROKII
(TBADH)
1120
16.2.2.9
GLYCEROL
DEHYDROGENASE
(GDH,
E.C.
1.1.1.6)
1122
16.2.2.10
GLYCEROL-3-PHOSPHATE
DEHYDROGENASE
(GPDH,
E.C.
1.1.1.8)
1124
16.2.2.11
LACTATE
DEHYDROGENASE
(LDH,
E.C.
1.1.1.27)
1125
16.2.2.12
CARBOHYDRATE
DEHYDROGENASES
1126
16.2.2.13
HYDROXYSTEROID
DEHYDROGENASES
(HSDH)
1127
16.2.2.14
OTHER
DEHYDROGENASES
1127
16.2.3
OXIDASES
AS
CATALYSTS
1129
16.2.3.1
GENERAL
REMARKS
1129
16.2.3.2
METHODS
TO
DIMINISH/AVOID
H2O2
1129
CONTENTS
XXV
16.2.3.3
PYRANOSE
OXIDASE
(P2O,
E.C.
1.1.3.10)
1132
16.2.3.4
GLYCOLATE
OXIDASE
(E.C.
1.1.3.15)
1135
16.2.3.5
NUCLEOSIDE
OXIDASE
(E.C.
1.1.3.28)
1138
16.2.3.6
GLUCOSE
OXIDASE
(E.C.
1.1.3.4)
1138
16.2.3.7
ALCOHOL
OXIDASE
(E.C.
1.1.3.13)
1139
16.2.3.8
GALACTOSE
OXIDASE
(E.C.
1.1.3.9)
1141
16.2.3.9
CHOLESTEROL
OXIDASE
(CHOX,
E.C.
1.1.3.6)
1142
16.2.4
PEROXIDASES
AS
CATALYSTS
1142
16.2.4.1
INTRODUCTION
1142
16.2.4.2
METHODS
TO
GENERATE
H2O2
1143
16.2.4.3
CHLOROPEROXIDASE
(CPO,
E.C.
1.11.1.10)
1145
16.2.4.4
CATALASE
(E.C.
1.11.1.6)
1145
16.2.5
QUINOPROTEIN
DEHYDROGENASES
(QDH)
1146
16.2.5.1
GENERAL
REMARKS
1146
16.2.5.2
METHANOL
DEHYDROGENASE
(E.C.
1.1.99.8)
1147
16.2.5.3
GLUCOSE
DEHYDROGENASE
(E.C.
1.1.99.17)
1148
16.2.6
WHOLE-CELL
OXIDATIONS
1148
16.2.6.1
STEREOSELECTIVE
OXIDATION
OF
(-)-CARVEOL
TO
(-)-CARVONE
1148
16.2.6.2
SUGAR
DEHYDROGENASES
APPLIED
IN
WHOLE
CELIS
1149
16.2.6.3
OXIDATION
OF
AROMATIC
AND
ALIPHATIC
ALCOHOLS
TO
CORRESPONDING
ALDEHYDES
AND
ACIDS
1150
16.2.6.4
ENANTIOSPECIFIC
REACTIONS
1154
16.2.6.5
STEREOINVERSIONS
USING
MICROBIAL
REDOX
REACTIONS
1157
16.2.7
MISCELLANEOUS
1162
16.2.7.1
BIOFUEL
CELIS
1162
16.2.7.2
BIOMIMETIC
ANALOGS
TO
NICOTINAMIDE
CO-NZYMES
1163
REFERENCES
1164
16.3
OXIDATION
OF
PHENOLS
1170
ANDREAS
SCHMID,
FRANK
HOLLMANN,
AND
BRUNO
BUEHLER
16.3.1
INTRODUCTION
1170
16.3.2
OXIDASES
1170
16.3.2.1
VANILLYLOXIDASE
(E.C.
1.1.3.38)
1170
16.3.2.2
LACCASE
(E.C.
1.10.3.2)
1174
16.3.3
MONOOXYGENASES
1176
16.3.3.1
TYROSINASE
(E.C.
1.10.3.1)
1176
16.3.3.2
2-HYDROXYBIPHENYL-3-MONOOXYGENASE
(HBPA,
E.C.
1.14.13.44)
1179
16.3.4
PEROXIDASES
1185
16.3.4.1
OXIDATIVE
COUPLING
REACTIONS
1185
16.3.4.2
HYDROXYLATION
OFPHENOLS
1186
16.3.4.3
NITRATION
OF
PHENOLS
1187
16.3.5
OTHER
OXIDOREDUCTASES
1188
16.3.5.1
4-CRESOL-OXIDOREDUCTASE
(PCMH,
E.C.
1.17.99.1)
1188
16.3.5.2
4-ETHYLPHENOL
OXIDOREDUCTAS
1189
16.3.6
IN
VIVO
OXIDATIONS
1190
16.3.6.1
PHENOLOXIDASE
OF
MUCUNA
PRURIENS
1190
XXVI
|
CONTENTS
16.3.6.2
MONOHYDROXYLATION
OF
(R)-2-PHENOXYPROPIONIC
ACID
AND
SIMILAR
SUBSTRATES
1191
16.3.6.3
BIOTRANSFORMATION
OF
EUGENOL
TO
VANILLIN
1191
REFERENCES
1192
16.4
OXIDATION
OF
ALDEHYDES
1194
ANDREAS
SCHMID,
FRANK
HOLLMANN,
AND
BRUNO
BUEHLER
16.4.1
INTRODUCTION
1194
16.4.2
ALCOHOL
DEHYDROGENASES
1194
16.4.3
ALDEHYDE
DEHYDROGENASES
1196
16.4.4
MONOOXYGENASES
1198
16.4.4.1
LUCIFERASE
(E.C.
1.14.14.3)
1198
16.4.4.2
P450
BM
-
3
H99
16.4.5
OXIDASES
1201
16.4.5.1
XANTHINE
OXIDASE
(E.C.
1.1.3.22)
1201
16.4.6
OXIDATIONS
WITH
INTACT
MICROBIAL
CELIS
1201
REFERENCES
1201
16.5
BAEYER-VILLIGER
OXIDATIONS
1202
SABINE
FLITSCH
AND
CIDEON
CROGAN
16.5.1
INTRODUCTION
1202
16.5.1.1
STEROIDAL
SUBSTRATES
1202
16.5.1.2
ALIPHATIC
SUBSTRATES
1205
16.5.1.3
ALICYCLIC
SUBSTRATES
1207
16.5.1.4
POLYCYDIC
MOLECULES
1212
16.5.2
BAEYER-VILLIGER
MONOOXYGENASES
1213
16.5.2.1
TYPE
1
BVMOS
1214
16.5.2.2
TYPE
2
BVMOS
1216
16.5.2.3
MECHANISM
OF
THE
ENZYMATIC
BAEYER-VILLIGER
REACTION
1216
16.5.3
SYNTHETIC
APPLICATIONS
1222
16.5.4
MODELS
FOR
THE
ACTION
OF
BAEYER-VILLIGER
MONOOXYGENASES
1234
16.5.5
CONCLUSION
AND
OUTLOOK
1238
REFERENCES
1241
16.6
OXIDATION
OF
ACIDS
1245
ANDREAS
SCHMID,
FRANK
HOLLMANN,
AND
BRUNO
BUEHLER
16.6.1
INTRODUCTION
1245
16.6.2
PYRUVATE
OXIDASE
(PYOX,
E.C.
1.2.3.3)
1246
16.6.3
FORMATE
DEHYDROGENASE
(FDH,
E.C.
1.2.1.2)
1247
16.6.4
OXIDATIONS
WITH
INTACT
MICROBIAL
CELIS
1247
16.6.4.1
PRODUCTION
OF
BENZALDEHYDE
FROM
BENZOYL
FORMATE
OR
MANDELIC
ACID
1247
16.6.4.2
MICROBIAL
PRODUCTION
OF
CIS.CIS-MUCONIC
ACID
FROM
BENZOIC
ACID
1248
16.6.4.3
BIOTRANSFORMATION
OF
SUBSTITUTED
BENZOATES
TO
THE
CORRESPONDING
CIS-DIOLS
1249
REFERENCES
1249
CONTENTS
IXXVIL
16.7
OXIDATION
OF
C-N
BONDS
1250
ANDREAS
SCHMID,
FRANK
HOLLMANN,
AND
BRUNO
BUEHLER
16.7.1
INTRODUCTION
1250
16.7.2
OXIDATIONS
CATALYZED
BY
DEHYDROGENASES
1251
16.7.2.1
I-ALANINE
DEHYDROGENASE
(I-ALA-DH,
E.C.
1.4.1.1)
1251
16.7.2.2
NICOTINIC
ACID
DEHYDROGENASE
(HYDROXYLASE)
(E.C.
1.5.1.13)
1252
16.7.3
OXIDATIONS
CATALYZED
BY
OXIDASES
1254
16.7.3.1
AMINO
ACID
OXIDASES
1254
16.7.3.2
AMINE
OXIDASES
1256
16.7.4
OXIDATIONS
CATALYZED
BY
TRANSAMINASES
1260
REFERENCES
1261
16.8
OXIDATION
AT
SULFUR
1262
KARL-HEINZ
VAN
PEE
16.8.1
ENZYMES
OXIDIZING
AT
SULFUR
AND
THEIR
SOURCES
1262
16.8.2
OXIDATION
OF
SULFIDES
1263
16.8.2.1
OXIDATION
OF
SULFIDES
BY
MONOOXYGENASES
AND
BY
WHOLE
ORGANSIMS
1263
16.8.2.2
OXIDATION
OF
SULFIDES
BY
PEROXIDASES
AND
HALOPEROXIDASES
1264
REFERENCES
1266
16.9
HALOGENATION
1267
KARL-HEINZ
VAN
PEE
16.9.1
CLASSIFICATION
OF
HALOGENATING
ENZYMES
AND
THEIR
REACTION
MECHANISMS
1267
16.9.1.1
HALOPEROXIDASES
AND
PERHYDROLASES
1267
16.9.1.2
FADH2-DEPENDENT
HALOGENASES
1268
16.9.2
SOURCES
AND
PRODUCTION
OF
ENZYMES
1268
16.9.2.1
FADHZ-DEPENDENT
HALOGENASES
1268
16.9.2.2
HALOPEROXIDASES
AND
PERHYDROLASES
1269
16.9.3
SUBSTRATES
FOR
HALOGENATING
ENZYMES
AND
REACTION
PRODUCTS
1271
16.9.3.1
HALOGENATION
OF
AROMATIC
COMPOUNDS
1271
16.9.3.2
HALOGENATION
OF
ALIPHATIC
COMPOUNDS
1273
16.9.4
REGIOSELECTIVITY
AND
STEREOSPECIFICITY
OF
ENZYMATIC
HALOGENATION
REACTIONS
1275
16.9.4.1
FADH
2
-DEPENDENT
HALOGENASES
1275
16.9.5
COMPARISON
OF
CHEMICAL
WITH
ENZYMATIC
HALOGENATION
1277
REFERENCES
1278
17
ISOMERIZATIONS
1281
NOBUYOSHI
ESAKI,
TATSUO
KURIHARA,
AND
KENJI
SODA
17.1
INTRODUCTION
1281
17.2
RACEMIZATIONS
AND
EPIMERIZATIONS
1282
17.2.1
PYRIDOXAL
5'-PHOSPHATE-DEPENDENT
AMINO
ACID
RACEMASES
AND
EPIMERASES
1283
17.2.1.1
ALANINE
RACEMASE
(E.C.
5.1.1.1)
1283
XXVIII
CONTENTS
17.2.1.2
AMINO
ACID
RACEMASE
WITH
LOW
SUBSTRATE
SPECIFICITY
(E.C.
5.1.1.10)
1289
17.2.1.3
17.2.2
A-AMINO--CAPROLACTAM
RACEMASE
1292
COFACTOR-INDEPENDENT
RACEMASES
AND
EPIMERASES
ACTING
ON
AMINO
ACIDS
1293
17.2.2.1
17.2.2.2
17.2.2.3
17.2.2.4
17.2.3
GLUTAMATE
RACEMASE
(E.C.
5.1.1.3)
1293
ASPARTATE
RACEMASE
(E.C.
5.1.1.13)
1297
DIAMINOPIMELATE
EPIMERASE
(E.C.
5.1.1.7)
1299
PROLINE
RACEMASE
(E.C.
5.1.1.4)
1301
OTHER
RACEMASES
AND
EPIMERASES
ACTING
ON
AMINO
ACID
DERIVATIVES
1301
17.2.3.1
17.2.3.2
17.2.3.3
17.2.3.4
17.2.4
17.2.4.1
17.3
17.3.1
17.3.1.1
17.3.1.2
17.3.1.3
17.3.1.4
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6
17.3.7
17.3.8
17.4
2-AMINO-A2-THIAZOLINE-4-CARBOXYLATE
RACEMASE
1301
HYDANTOIN
RACEMASE
1303
N-ACYLAMINO
ACID
RACEMASE
1306
ISOPENICILLIN
N
EPIMERASE
1308
RACEMIZATION
AND
EPIMERIZATION
AT
HYDROXYL
CARBONS
1310
MANDELATE
RACEMASE
(E.C.
5.1.2.2)
1310
ISOMERIZATIONS
1312
D-XYLOSE
(GLUCOSE)
ISOMERASE
(E.C.
5.3.1.5)
1313
PROPERTIES
1313
REACTION
MECHANISM
1314
PRODUCTION
OF
FRUCTOSE
1316
PRODUCTION
OF
UNUSUAL
SUGAR
DERIVATIVES
1316
PHOSPHOGLUCOSE
ISOMERASE
(E.C.
5.3.1.9)
1318
TRIOSEPHOSPHATE
ISOMERASE
(E.C.
5.3.1.1)
1320
L-RHAMNOSE
ISOMERASE
(E.
C.
5.3.1.14)
1321
R-FUCOSE
ISOMERASE
(E.C.
5.3.1.3)
1323
N-ACETYL-D-GLUCOSAMINE
2-EPIMERASE
1324
MALEATE
CIS-TRANS
ISOMERASE
(E.
C.
5.2.1.1)
1324
UNSATURATED
FATTY
ACID
CIS-TRANS
ISOMERASE
1325
CONCLUSION
1326
REFERENCES
1326
18
INTRODUCTION
AND
REMOVAL
OF
PROTECTING
CROUPS
1333
DIETER
KADEREIT,
REINHARD
REENTS,
DURAISWAMY
A.
FEYARAJ,
AND
HERBERT
WALDMANN
18.1
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.3
INTRODUCTION
1333
PROTECTION
OF
AMINO
GROUPS
1334
N
-TERMINAL
PROTECTION
OF
PEPTIDES
1334
ENZYME-LABILE
URETHANE
PROTECTING
GROUPS
1338
PROTECTION
OF
THE
SIDE
CHAIN
AMINO
GROUP
OF
LYSINE
1341
PROTECTION
OF
AMINO
GROUPS
IN
SS-LACTAM
CHEMISTRY
1341
PROTECTION
OF
AMINO
GROUPS
OF
NUCLEOBASES
1343
PROTECTION
OF
THIOL
GROUPS
1343
CONTENTS
XXIX
18.3.1
PROTECTION
OF
THE
SIDE
CHAIN
THIOL
GROUP
OF
CYSTEINE
1343
18.4
PROTECTION
OF
CARBOXY
GROUPS
1344
18.4.1
C-TERMINAL
PROTECTION
OF
PEPTIDES
1344
18.4.2
PROTECTION
OF
THE
SIDE
CHAIN
GROUPS
OF
GLUTAMIC
AND
ASPARTICACID
1352
18.5
PROTECTION
OF
HYDROXY
GROUPS
1353
18.5.1
PROTECTION
OF
MONOSACCHARIDES
1354
18.5.2
DEPROTECTION
OF
MONOSACCHARIDES
1369
18.5.3
DI
AND
OLIGOSACCHARIDES
1378
18.5.4
NUCLEOSIDES
1380
18.5.5
FUERTHER
AGLYCON
GLYCOSIDES
1383
18.5.6
POLYHYDROXYLATED
ALKALOIDS
1386
18.5.7
STEROIDS
1388
18.5.8
PHENOLIC
HYDROXY
GROUPS
1390
18.6
BIOCATALYSIS
IN
POLYMER
SUPPORTED
SYNTHESIS:
ENZYME-LABILE
LINKER
GROUPS
1392
18.6.1
ENDO-LINKERS
1393
18.6.2
EXO-LINKERS
1402
18.7
OUTLOOK
1408
REFERENCES
1409
19
REPLACING
CHEMICAL
STEPS
BY
BIOTRANSFORMATIONS:
INDUSTRIAL
APPLICATION
AND
PROCESSES
USING
BIOCATALYSIS
1419
ANDREAS
LIESE
19.1
INTRODUCTION
1419
19.2
TYPES
AND
HANDLING
OF
BIOCATALYSTS
1420
19.3
EXAMPLES
1421
19.3.1
REDUCTION
REACTIONS
CATALYZED
BY
OXIDOREDUCTASES
(E.
C.
1)
1422
19.3.1.1
KETONE
REDUCTION
USING
WHOLE
CELIS
OF
NEUROSPORA
CRASSA
(E.C.
L.L.L.L)P
1422
19.3.1.2
KETOESTER
REDUCTION
USING
CELL
EXTRACT
OF
ACINETOBACTER
CALCOACETICUS
(E.C.
L.L.L.L)
1423
19.3.1.3
ENANTIOSELECTIVE
REDUCTION
WITH
WHOLE
CELIS
OF
CANDIDA
SORBOPHILA
(E.C.
1.1.X.X)
1424
19.3.2
OXIDATION
REACTIONS
CATALYZED
BY
OXIDOREDUCTASES
(E.
C.
1)
1425
19.3.2.1
ALCOHOL
OXIDATION
USING
WHOLE
CELIS
OF
GLUCONOBACTER
SUBOXYDANS
(E.C.
1.1.99.21)
1425
19.3.2.2
OXIDATIVE
DEAMINATION
CATALYZED
BY
IMMOBILIZED
D-AMINO
ACID
OXIDASE
FROM
TRIGONOPSIS
VARIABILIS
(E.C.
1.4.3.3)
1426
19.3.2.3
KINETIC
RESOLUTION
BY
OXIDATION
OF
PRIMARY
ALCOHOLS
CATALYZED
BY
WHOLE
CELIS
FROM
RHODOCOCCUS
ERYTHROPOLIS
(E.C.
L.X.X.X)
1427
19.3.2.4
HYDROXYLATION
OF
NICOTINIC
ACID
(NIACIN)
CATALYZED
BY
WHOLE
CELIS
OF
ACHROMOBACTER
XYLOSOXIDANS
(E.
C.
1.5.1.13)
1428
XXXI
CONTENTS
19.3.2.5
REDUCTION
OF
HYDROGEN
PEROXIDE
CONCENTRATION
BY
CATALASE
(E.C.
1.11.1.6)
1428
19.3.3
HYDROLYTIC
CLEAVAGE
AND
FORMATION
OF
C-0
BONDS
BY
HYDROLASES
(E.C.
3)
1430
19.3.3.1
KINETIC
RESOLUTION
OF
GLYCIDIC
ACID
METHYL
ESTER
BY
LIPASE
FROM
SERRATIA
MARCESCENS
(E.C.
3.1.1.3)
1430
19.3.3.2
KINETIC
RESOLUTION
OF
DIESTER
BY
PROTEASE
SUBTILISIN
CARLSBERG
FROM
BACILLUS
SP.
(E.C.
3.4.21.62)
1431
19.3.3.3
KINETIC
RESOLUTION
OF
PANTOLACTONES
AND
DERIVATIVES
THEREOF
BY
A
LACTONASE
FROM
FUSARIUM
OXYSPORUM
(E.
C.
3.1.1.25)
1433
19.3.3.4
HYDROLYSIS
OF
STARCH
TO
GLUCOSE
BY
ACTION
OF
TWO
WNZYMES:
A-AMYLASE
(E.C.
3.2.1.1)
AND
AMYLOGLUCOSIDASE
(E.C.
3.2.1.3)
1433
19.3.4
FORMATION
OR
HYDROLYTIC
CLEAVAGE
OF
C-N
BONDS
BY
HYDROLASES
(E.C.
3)
1435
19.3.4.1
ENANTIOSELECTIVE
ACYLATION
OF
RACEMIC
AMINES
CATALYZED
BY
LIPASE
FROM
BURKHOLDERIA
PLANTARII
(E.C.
3.1.1.3)
1435
19.3.4.2
7-AMINOCEPHALOSPORANIC
ACID
FORMATION
BY
AMIDE
HYDROLYSIS
CATALYZED
BY
GLUTARYL
AMIDASE
(E.
C.
3.1.1.41)
1436
19.3.4.3
PENICILLIN
G
HYDROLYSIS
BY
PENICILLIN
AMIDASE
FROM
ESCHERICHIA
COLI
(E.C.
3.5.1.11)
1438
19.3.4.4
KINETIC
RESOLUTION
OF
A-AMINO
ACID
AMIDES
CATALYZED
BY
AMINOPEPTIDASE
FROM
PSEUDOMONAS
PUTIDA
(E.C.
3.4.1.11)
1439
19.3.4.5
PRODUCTION
OF
I-METHIONINE
BY
KINETIC
RESOLUTION
WITH
AMINOACYLASE
OF
ASPERGILLUS
ORYZAE
(E.
C.
3.5.1.14)
1441
19.3.4.6
PRODUCTION
OF
O-P-HYDROXYPHENYL
GLYCINE
BY
DYNAMIC
RESOLUTION
WITH
HYDANTOINASE
FROM
BACILLUS
BREVIS
(E.
C.
3.5.2.2)
1441
19.3.4.7
DYNAMIC
RESOLUTION
OF
A-AMINO-E-CAPROLACTAM
BY
THE
ACTION
OF
LACTAMASE
(E.C.
3.5.2.11)
AND
RACEMASE
(E.C.
5.1.1.15)
1442
19.3.4.8
SYNTHESIS
OF
SS-LACTAM
ANTIBIOTICS
CATALYZED
BY
PENICILLIN
ACYLASE
(E.C.
3.5.1.11)
1444
19.3.4.9
SYNTHESIS
OF
AZETIDINONE
SS-LACTAM
DERIVATIVES
CATALYZED
BY
PENICILLIN
ACYLASE
(E.C.
3.5.1.11)
1444
19.3.4.10
ENANTIOSELECTIVE
SYNTHESIS
OF
AN
ASPARTAME
PRECURSOR
WITH
THERMOLYSIN
FROM
BACILLUSPROTEOLICUS
(E.C.
3.4.24.27)
1446
19.3.4.11
HYDROLYSIS
OF
HETEROCYCLIC
NITRILE
BY
NITRILASE
FROM
AGROBACTERIUM
SP.
(E.C.
3.5.5.1)
1447
19.3.5
FORMATION
OF
C-0
BONDS
BY
LYASES
1447
19.3.5.1
SYNTHESIS
OF
CAMITINE
CATALYZED
BY
CARNITINE
DEHYDRATASE
IN
WHOLE
CELIS
(E.C.
4.2.1.89)
1447
19.3.6
FORMATION
OF
C-N
BONDS
BY
LYASES
(E.
C.
4)
1448
19.3.6.1
SYNTHESIS
OF
T-DOPA
CATALYZED
BY
TYROSINE
PHENOL
LYASE
FROM
ERWINIA
HERBICOLA
(E.
C.
4.1.99.2)
1448
19.3.6.2
SYNTHESIS
OF
5-CYANO
VALERAMIDE
BY
NITRILE
HYDRATASE
FROM
PSEUDOMONAS
CHLORORAPHIS
B23
(E.
C.
4.2.1.84)
1449
CONTENTS
|XXXI
19.3.6.3
SYNTHESIS
OF
THE
COMMODITY
CHEMICAL
ACRYLAMIDE
CATALYZED
BY
NITRILE
HYDRATASE
FROM
RHODOCOCCUS
RODOCHROUS
(E.
C.
4.2.1.84)
1450
19.3.6.4
SYNTHESIS
OFNICOTINAMIDE
CATALYZED
BY
NITRILE
HYDRATASE
FROM
RHODOCOCCUS
RODOCHROUS
(E.
C.
4.2.1.84)
1451
19.3.7
EPIMERASE
1452
19.3.7.1
EPIMERIZATION
OF
GLUCOSAMINE
CATALYZED
BY
EPIMERASE
FROM
E.
COLI
(E.C.
5.1.3.8)
1452
19.4
SOME
MISCONCEPTIONS
ABOUT
INDUSTRIAL
BIOTRANSFORMATIONS
1453
19.5
OUTLOOK
1454
REFERENCES
1454
20
TABULAR
SURVEY
OF
COMMERCIALLY
AVAILABLE
ENZYMES
1461
PETER
RASOR
INDEX
1519 |
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV014529476 |
ctrlnum | (OCoLC)634395630 (DE-599)BVBBV014529476 |
edition | 2., completely rev. and enl. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV014529476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111108</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020708s2002 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">964051052</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527299491</subfield><subfield code="9">3-527-29949-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634395630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014529476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enzyme catalysis in organic synthesis</subfield><subfield code="b">a comprehensive handbook</subfield><subfield code="n">1</subfield><subfield code="c">ed. by Karlheinz Drauz ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., completely rev. and enl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 334 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Enzymkatalyse</subfield><subfield code="0">(DE-588)4152480-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Enzymkatalyse</subfield><subfield code="0">(DE-588)4152480-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Drauz, Karlheinz</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014529474</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009888862&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009888862</subfield></datafield></record></collection> |
id | DE-604.BV014529476 |
illustrated | Illustrated |
indexdate | 2024-08-22T00:33:05Z |
institution | BVB |
isbn | 3527299491 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009888862 |
oclc_num | 634395630 |
open_access_boolean | |
owner | DE-20 DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-20 DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
physical | XXXVII, 334 S. Ill., graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Enzyme catalysis in organic synthesis a comprehensive handbook 1 ed. by Karlheinz Drauz ... 2., completely rev. and enl. ed. Weinheim Wiley-VCH 2002 XXXVII, 334 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Organische Synthese (DE-588)4075695-6 gnd rswk-swf Enzymkatalyse (DE-588)4152480-9 gnd rswk-swf Organische Synthese (DE-588)4075695-6 s Enzymkatalyse (DE-588)4152480-9 s DE-604 Drauz, Karlheinz Sonstige oth (DE-604)BV014529474 1 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009888862&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Enzyme catalysis in organic synthesis a comprehensive handbook Organische Synthese (DE-588)4075695-6 gnd Enzymkatalyse (DE-588)4152480-9 gnd |
subject_GND | (DE-588)4075695-6 (DE-588)4152480-9 |
title | Enzyme catalysis in organic synthesis a comprehensive handbook |
title_auth | Enzyme catalysis in organic synthesis a comprehensive handbook |
title_exact_search | Enzyme catalysis in organic synthesis a comprehensive handbook |
title_full | Enzyme catalysis in organic synthesis a comprehensive handbook 1 ed. by Karlheinz Drauz ... |
title_fullStr | Enzyme catalysis in organic synthesis a comprehensive handbook 1 ed. by Karlheinz Drauz ... |
title_full_unstemmed | Enzyme catalysis in organic synthesis a comprehensive handbook 1 ed. by Karlheinz Drauz ... |
title_short | Enzyme catalysis in organic synthesis |
title_sort | enzyme catalysis in organic synthesis a comprehensive handbook |
title_sub | a comprehensive handbook |
topic | Organische Synthese (DE-588)4075695-6 gnd Enzymkatalyse (DE-588)4152480-9 gnd |
topic_facet | Organische Synthese Enzymkatalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009888862&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014529474 |
work_keys_str_mv | AT drauzkarlheinz enzymecatalysisinorganicsynthesisacomprehensivehandbook1 |