The tapestry of modern astrophysics:
"The scope of modern astrophysics is the entire cosmos and everything in it. 'The tapestry of modern astrophysics' provides advances undergraduates or graduate-level students with a comprehensive introduction to the subject"--from p. [4] of cover.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley-Interscience
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "The scope of modern astrophysics is the entire cosmos and everything in it. 'The tapestry of modern astrophysics' provides advances undergraduates or graduate-level students with a comprehensive introduction to the subject"--from p. [4] of cover. |
Beschreibung: | XXVI, 861 S. Ill., graph. Darst. |
ISBN: | 0471168165 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV014521793 | ||
003 | DE-604 | ||
005 | 20030526 | ||
007 | t | ||
008 | 020605s2003 xxuad|| |||| 00||| eng d | ||
010 | |a 2002072158 | ||
020 | |a 0471168165 |9 0-471-16816-5 | ||
035 | |a (OCoLC)49902167 | ||
035 | |a (DE-599)BVBBV014521793 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 |a DE-355 | ||
050 | 0 | |a QB461 | |
082 | 0 | |a 523.01 |2 21 | |
084 | |a US 2000 |0 (DE-625)146681: |2 rvk | ||
100 | 1 | |a Shore, Steven N. |d 1953- |e Verfasser |0 (DE-588)113534868 |4 aut | |
245 | 1 | 0 | |a The tapestry of modern astrophysics |c Steven N. Shore |
264 | 1 | |a Hoboken, NJ |b Wiley-Interscience |c 2003 | |
300 | |a XXVI, 861 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a "The scope of modern astrophysics is the entire cosmos and everything in it. 'The tapestry of modern astrophysics' provides advances undergraduates or graduate-level students with a comprehensive introduction to the subject"--from p. [4] of cover. | |
650 | 4 | |a Astrophysics | |
650 | 0 | 7 | |a Astrophysik |0 (DE-588)4003326-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Astrophysik |0 (DE-588)4003326-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009887036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009887036 |
Datensatz im Suchindex
_version_ | 1804129318115213312 |
---|---|
adam_text | CONTENTS
Preface
xxi
1
From Gases to Clusters: Concepts in Gravitation and Gas Laws
1
1.1
Introductory Remarks
1
1.2
Gravity
1
1.2.1
The Two-Body Problem
2
1.2.2
The Effects of Finite Size
3
1.2.3
Tides
6
1.2.4
Precession
7
1.2.4.1
Rotational Precession
8
1.2.4.2
Apsidal Motion and Orbital Precession
10
1.2.5
The Three-Body Problem
11
1.2.6
Resonances
13
1.2.6.1
Trapping
14
1.2.7
The
ЛГ
-Body
Problem
15
1.3
Thermodynamics and Statistical Mechanics
15
1.3.1
Thermodynamic Quantities
16
1.3.2
Microphysics and the Gas Laws
19
1.3.3
Statistical Descriptions
19
1.3.4
Entropy and Mixing
20
1.3.4.1
The Maxwellian Distribution for Thermal
Equilibrium
21
1.3.4.2
Discretizing the States: Boltzmann
Distribution
23
1.3.4.3
The Partition Function
25
1.3.5
The Planck Function and
Blackbody
Radiation
26
1.3.6
Degenerate Equation of State
28
1.3.6.1
The Fermi-Dirac Distribution Function
29
1.3.6.2
Bose-Einstein Statistics
34
1.3.7
The Saha Equation: Ionization Balance in Thermal
Equilibrium
35
1.3.7.1
The Concept of Local Thermodynamic
Equilibrium (LTE)
36
1.4
Collective Behavior: Fluids
37
1.4.1
Merging Gravitation and the Gas Laws: Stellar Statistical
Mechanics
37
1.4.1.1
The Mean Path
38
1.4.1.2
Dynamical Friction
38
vi
CONTENTS
1.4.2
When Is a Gas a Fluid?
39
1.4.3
Viscosity and Vorticity
43
1.4.4
Sound and Other Collective Fluid Instabilities
44
1.4.5
Plasmas and Magnetohydrodynamics
(MHD)
46
1.4.5.1
Magnetohydrodynamics and AlfVen Waves
49
1.4.6
Diffusion
51
1.4.6.1
Diffusive Separation in Gases
53
1.4.6.2
Rate Balance, the Boltzmann Collision Integral,
and Diffusion
54
1.5
The Virial Theorem
56
1.5.1
Virialized Gas Bags
61
1.5.2
The Gravitothermal Catastrophe
62
1.5.3
Evaporation of Star Clusters
62
1.5.4
Tidal Limits for Star Clusters and Galaxies
64
1.6
The Fokker-Planck Equation
64
1.6.1
The
H
Theorem
67
1.6.2
Agglomeration Equations
68
1.A Gravitational Potential for Homogeneous Spheroids
70
l.B A Lightning-Fast Review of Hamiltonian and Lagrangian
Mechanics
75
l.C General Relativity on the Cheap
77
l.C.l Special Relativity
77
1.C.2 The Metric
81
1.C.3 The Equivalence Principle and Mach s Principle
86
1.C.4 Deriving the General Relativistic Equations of Motion
87
l.C.4.1 The Riemann Curvature Tensor
87
l.C.4.2 The
Ricci
Tensor and the Curvature Scalar
88
l.C.4.3
Electromagnetism
89
l.C.4.4 The
Schwarzschild
Solution
91
1.C.5 Horizons and Black Holes
96
1.C.6 Symmetries and Killing Observers
97
1.C.7 Static Curvature: Gravitational Lenses
98
1.C.8 Dynamic Curvature: Gravitational Waves
99
1.C.9 Connections with Global Structures: A Comment
101
2
The Raw Material: Instruments and Observations
103
2.1
The Role of Instruments
103
2.2
Calibration
105
2.2.1
Astronomy: Parallax and Proper Motion
106
2.2.1.1
Statistical Parallax
108
2.2.1.2
Biases in Parallax Data
108
2.2.2
Luminosities
109
2.2.2.1
Magnitudes
109
2.2.3
Spectral Energy Distribution
112
2.2.3.1
Satellite Observations
117
CONTENTS
vii
2.2.4
Masses: Binary Stars
118
2.2.5
Radii and Luminosity Ratios: Eclipsing Binary Stars
119
2.3
Photon Detectors
120
2.3.1
Photographic Plates
120
2.3.2
Photomultiplier Tubes (PMTs)
123
2.3.3
Charge-Coupled Devices (CCDs)
124
2.3.4
Multianode MicroChannel Arrays (MAMAs)
125
2.3.5
Bolometer Arrays and Infrared Detectors
126
2.3.6
Higher-Energy Observations
128
2.3.7
Radio Astronomy
128
2.4
Spectrographs
130
2.4.1
Gratings and Resolution
131
2.4.2
Correlation Spectrometers
132
2.4.3
Multiobjects Spectrographs (MOSs)
132
2.5
Image Formation
134
2.5.1
What Is an Image?
134
2.5.2
The Nyquist Frequency and Resolution
136
2.5.3
Interferometers
136
2.5.3.1
Michelson Interferometer
137
2.5.3.2
Fabry-Perot Interferometer
138
2.5.4
Intensity Interferometers
139
2.5.5
Aperture Synthesis
140
2.5.6
Scintillitation: Atmospheric Seeing
142
2.5.7
Speckle Inferometry
145
2.5.8
Resolution
146
2.6
Image Reconstruction Methods
146
2.6.1
The CLEAN Algorithm
149
2.6.2
Bayesian Methods
150
2.6.3
Maximum Entropy
151
2.6.4
Wavelets
154
2.A A Note on Cosmic Backgrounds across the Spectrum
156
2.B Statistical Distributions
157
2.B.1 Samples
157
2.B.2 MEM and Maximum Likelihood
159
2.B.3 Bias
160
2.C Properties of the Fourier Transform and Convolutions
161
2.D Implementation of
Bayes
Theorem
163
3
Radiative Transfer and the Outer Layers of Stars
166
3.1
Introduction
166
3.2
The Phenomenon of Radiative Transfer
167
3.3
Transition Probabilities and Statistical Equilibrium
168
3.3.1
Statistical Equilibrium
169
3.3.1.1
Collision Rates
171
3.3.1.2
Equilibrium Population
172
CONTENTS
3.3.2 Strange
Populations:
Masers 175
3.4
Radiative
Transfer 176
3.4.1
Intensity, Flux, and Moments of the Radiation Field
176
3.4.2
Setting up the Transfer Equation
179
3.4.2.1
The Spherical Transfer Equation
180
3.4.3
Some Solutions to the Transfer Equation
182
3.4.3.1
Two-Stream Transfer
184
3.4.3.2
Limb Darkening and Temperature
Gradients
184
3.4.3.3
Life in a Fog, or What Scattering Means
186
3.4.3.4
Thermalization Length
189
3.4.4
Diffusion Approximation
190
3.4.4.1
A Note on Probability and Radiative
Transfer
190
3.5
Opacity
192
3.5.1 Bremsstrahlung, Ionization,
and Recombination
192
3.5.1.1
Thermal
Bremsstrahlung
or Free-Free
Opacity
192
3.5.1.2
Ionization and Recombination
194
3.5.2
Line Processes: Bound-Bound Transitions
197
3.5.2.1
Line Profiles
197
3.5.3
Collisional Broadening and Lifetimes
199
3.5.3.1
Doppler
Broadening and the
Voigt
Profile
199
3.5.4
Curve of Growth
201
3.5.5
Types of Scattering
203
3.5.5.1
Resonance Scattering
203
3.5.5.2
Rayleigh Scattering
204
3.5.5.3
Redistribution in Line Profiles
205
3.5.5.4
Fluorescence and Raman Scattering
205
3.5.6
Electron Scattering: Thomson and Compton
Scattering
208
3.5.6.1
The Compton Effect, the Kompaneets Equation,
and Diffusive Transfer of High-Energy
Photons
209
3.5.7
Broadening Mechanisms for Line Profiles
214
3.5.7.1
Hyperfine Structure: Effect of Atomic Structure
and Nuclear Spin
214
3.5.7.2
Zeeman
Effect: Effect of Magnetic Fields
215
3.5.7.3
Stark Broadening
216
3.5.7.4
Van
der Waals
Broadening
221
3.5.7.5
Rotational Broadening
221
3.5.7.6
Doppler
Imaging
223
3.6
Stellar Atmospheres
224
3.6.1
The Justification for Classifying Spectra
225
3.6.2
The Stellar Atmosphere Problem
227
CONTENTS ix
3.6.3
Radiative Equilibrium: What Goes in, Comes Out
230
3.6.4
Determining the Thermal Structure
231
3.6.5
Convection in Stellar Atmospheres
232
3.6.6
LTE versus NLTE in Stellar Atmospheres
237
3.6.7
Some Complications
238
3.6.7.1
Gravity Darkening by Rotation
238
3.6.7.2
External Illumination
239
3.7
Extended Envelopes and Outflows
241
3.7.1
The Spherical Transfer Equation Yet Again
241
3.7.2
Low-Frequency Observations of Extended Envelopes and
Winds
243
3.7.3
Stellar Winds
245
3.7.3.1
Radiation Pressure as a Driving Mechanism
245
3.7.3.2
Radiation-Driven Elemental Diffusion in
Atmospheres
248
3.7.3.3
Thermal Evaporation: The Parker Wind
Solution
249
3.7.3.4
Mechanical Driving Mechanisms
250
3.7.3.5
Chromospheres and Coronae
251
3.7.4
Escape Probabilities and Radiative Transfer in Flows
252
3.7.4.1
The Effect of a Velocity Gradient on the Escape
of Photons: Kinematics and Line Profiles
256
3.7.4.2
Time-Dependent Flows: Novae and
Supernovae
and Spectrum Formation
259
3.A Quantum-Mechanical Interlude: Time-Dependent Perturbation
Theory for Transition Strengths
260
3.B Radiative Transfer in the Lagrangian Frame
263
3.C A Brief Survey of Methods for Solving the Transfer Equation
265
3.C.1 Diffuse Scattering as an Example of Probabilities: Invariant
Embedding
265
3.C.2 Integral Equation Methods for Radiative Equilibrium
269
3.C.3 Discrete-Ordinates Methods
270
3.D A Walk through the Stellar
Spectroscopie Zoo
272
3.D.1 Stellar Classification and Types of Stars
272
3.D.1.1 A Historical Digression
272
3.D.2 The Classification Scheme
274
3.D.2.1
О
Stars
274
3.D.2.2
В
Stars
275
3.D.2.3 A Stars
276
3.D.2.4
F
Stars
277
3.D.2.5
G
Stars
277
3.D.2.6
К
Stars
278
3.D.2.7
M
Stars
278
3.D.2.8
L
Stars: Methane Dwarfs
278
3.D.2.9 Carbon Stars
278
3.D.2.10 White Dwarf Stars
279
χ
CONTENTS
4
The Interiors of the Stars and Stellar Evolution
280
4.1
Introductory Remarks
280
4.2
Self-Gravitating Spheres
282
4.2.1
The Virial Theorem in Stellar Structure
282
4.2.2
The Kelvin-Helmholtz Timescale
284
4.3
Thermodynamics and Equations of State
285
4.3.1
Polytropic Equation of State
285
4.3.2
The Radiation-Dominated Equation of State
286
4.3.3
Effects of Partial Ionization
288
4.3.4
Stability of Polytropes
289
4.3.5
Degenerate Equations of State
291
4.4
Equations of Structure
292
4.4.1
Mass Continuity and Hydrostatic Equilibrium
293
4.4.2
Polytropes and the Lane-Emden Equation
294
4.4.3
Energy Transport in Stellar Interiors
299
4.4.3.1
Radiation
299
4.4.3.2
Conduction
301
4.4.3.3
Convection
302
4.4.3.4
Semiconvection and Double-Diffusive
Processes
304
4.4.3.5
Overshooting and the Mixing Length
Concept
305
4.4.4
Rotation and
von Zeipeľs
Theorem
307
4.4.5
Dimensional Analysis, Scaling Relations, and
Homology
309
4.5
Stellar Pulsation and Stability
311
4.5.1
Observational Justification
311
4.5.2
The Mechanism for Pulsation
314
4.5.3
Stabilty Analysis: One-Zone Pulsation
315
4.5.4
Probing the Stellar Envelope
319
4.5.4.1
Helioseismology
321
4.5.4.2
The Linear Pulsation Equation
323
4.6
Energy Generation Mechanisms
328
4.6.1
Gravitational Contraction Again
329
4.6.2
Nuclear Reactions
330
4.6.2.1
Nuclear Binding Energy
330
4.6.2.2
The Reaction Rates
332
4.6.2.3
Hydrogen Burning: The CNO Cycle
337
4.6.2.4
Hydrogen Burning: The Proton-Proton (pp)
Chain
338
4.6.3
Helium Burning: The 3 a Reaction
341
4.6.3.1
Carbon Burning
342
4.6.3.2
Higher-Order Nucleosynthesis and Equilibrium
Processing
343
4.6.3.3
Neutron Processing and Heavy-Element
Nucleosynthesis
344
CONTENTS
4.6.4
Explosive Hydrogen Burning
348
4.6.5
Abundance of the Elements in the Solar System
349
4.6.6
Neutrino Process
351
4.6.6.1
The Solar Neutrino Problem
352
4.6.6.2
Plasma Screening Corrections
355
4.6.6.3
The
URCA
Process
356
4.7
Stellar Evolution
357
4.7.1
Observational Basis
357
4.7.1.1
Historical Remarks: The Hertzsprung-Russell
Diagram
357
4.7.1.2
The Observer s HR Diagram
360
4.7.2
Mass Determinations
360
4.7.2.1
The Mass-Luminosity Relation
361
4.7.3
Theory: The Principal Stages of Stellar Evolution
362
4.7.4
The Earliest Stages of Evolution
Protostars
364
4.7.4.1
Main Sequence
366
4.7.4.2
Ascent of the Red Giant Branch
369
4.7.4.3
From the Giant Branch Tip to the Horizontal
Branch
372
4.7.4.4
The Asymptotic Giant Branch
(AGB):
Hot
Onions
373
4.7.5
Death
377
4.7.5.1
How the Most Massive Stars End Their
Lives
377
4.7.5.2
Postasymptotic Giant Branch Evolution of
Low-Mass Stars and Planetary Nebulas
378
4.7.5.3
White Dwarf Stars: The Final State of Low-Mass
Stars
380
4.7.6
Core Collapse
Supernovae
Type II and Neutron Star
Formation
385
4.7.6.1
Classification of Supernovas
385
4.7.6.2
Physics of Core Collapse and Shock
Generation
388
4.7.6.3
Direct Evidence for Nucleosynthesis in
Supernovae 388
4.7.7
Neutron Stars
389
4.7.7.1
Neutron Star Interiors
391
4.7.7.2
Neutron Star Cooling and Detectability
393
4.7.8
Pulsars
394
4.7.8.1
Emission Regions and Mechanisms
396
4.7.8.2
Rotational Properties: Period Changes and
Glitches
399
4.8 Isochrones 401
4.8.1
The Initial Mass Function: A Result of
Isochrones 404
4.A Magnetic Dynamos and the Interplay between Turbulence
and Rotation
405
xii CONTENTS
4A.1 The Dynamo
Equations
406
4.A.1.1
The Dynamo Number and Scaling Relations
409
4.B Calculation of Nuclear Reaction Networks
410
5
Structure and Evolution of Close Binary Stars
413
5.1
Introduction
413
5.2
Eclipses and Their Uses
414
5.3
Effect of Proximity: Tides and the Roche Surface
417
5.3.1
The Roche Surface
418
5.3.2
Tidal Interactions: Circularization and
Synchronization
420
5.4
Evolution of Stars in Close Binaries
422
5.4.1
Common Envelope Evolution
423
5.4.2
Angular Momentum Consideration and the Roche
Surface
426
5.4.3
Period Changes
428
5.4.3.1
Gravitational Radiation
428
5.4.3.2
Magnetic Braking
430
5.5
Mass Transfer in Close Binaries
431
5.5.1
Mass Loss by Winds
431
5.5.2
Accretion from Stellar Winds
432
5.5.3
Accretion by Streams and Roche Lobe Overflow
434
5.5.4
Formation and Structure of Viscous Accretion Disks
435
5.5.4.1
Viscous Accretion Disks
437
5.5.4.2
Magnetorotational Instability and Viscosity in
Disks
442
5.5.5
Boundary Layers
445
5.6
Cataclysmic Variables and Compact Objects in Close
Binaries
447
5.6.1
Novae and X-ray Bursts: Surface Nuclear Explosions
448
5.6.2
Accretion by Magnetized Stars
450
5.6.3
Black Holes in Binary Systems
452
5.7
Formation of Binary Systems: A Comment or Two
453
5.7.1
Blue Stragglers: Collisions and Captures in Clusters
456
5.
A Some Hydrodynamic Details
457
6
The Interstellar Medium
459
6.1
Introductory Remarks
459
6.2
Gas
461
6.2.1
Ionized Regions: Emission Nebulae
462
6.2.1.1
Nebular Lines
463
6.2.1.2
Recombination Lines
466
6.2.2
Heating and Cooling
472
6.2.3
Cosmic Ray Ionization and Charge Transfer
474
CONTENTS xiii
6.2.4 Absorption Lines 475
6.2.4.1
Atomic Resonance Lines:
H
I Lyman a
1216
Å
and Others
476
6.2.4.2
H
I
21
cm and Related Radio Lines
482
6.2.4.3
Molecular Spectra
485
6.2.4.4
Molecular Hydrogen (H2)
490
6.2.5 Masers 491
6.2.6
Warm and Hot Diffuse Gas
492
6.3
Dust
495
6.3.1
Observations
497
6.3.1.1
Optical and Ultraviolet Extinction
498
6.3.1.2
Ultraviolet and Infrared Broad Features
500
6.3.2
Grain Optics
501
6.3.3
Infrared Observations
502
6.3.4
Big Grains
504
6.3.4.1
Depletion of Metals
505
6.3.4.2
Solar System Measurements: Meteorites and
Heliospheric Dust
506
6.3.4.3
Grain Charging
507
6.3.4.4
Poynting-Robertson Drag and Accretion
508
6.3.5
Small Grains and Big Molecules
509
6.3.5.1
Diffuse Interstellar Bands (DIBs)
512
6.3.6
Polarization and Grain Alignment in an External Magnetic
Field
514
6.3.6.1
Grain Size Distribution and Origin of the
Dust
518
6.3.7
Reflection Nebulae and Light
Echos 520
6.3.8
The Galactic Distribution of Dust
521
6.4
Molecular Clouds
522
6.4.1
Observational Mass Determination Using CO Lines
523
6.4.2
The Population of Clouds
526
6.5
Magnetic Fields
527
6.5.1
Cosmic Rays
527
6.5.2
Synchrotron Radiation
533
6.5.3
Propagation Effects
536
6.5.3.1
Faraday Rotation and Large-Scale Field
536
6.5.3.2
Electron Density by Scintillation and Dispersion
Measure
540
6.5.3.3
How to Search for Warm Gas
541
6.5.4
Magnetized Clouds
542
6.5.4.1
Direct Observation of the
Zeeman
Effect
542
6.5.4.2
Ambipolar Diffusion
542
6.6
Molecules and Astrochemistry
543
6.6.1
Observations
543
6.6.2
Interstellar Chemistry
544
xiv CONTENTS
6.6.2.1
Surface Chemistry: Formation of Molecular
Hydrogen
544
6.6.2.2
Gas-Phase Chemistry
546
6.6.2.3
Ionization and Dissociation
547
6.6.2.4
Molecular Cooling Processes
548
6.6.2.5
H3 as an Example of Ion Chemistry
549
6.6.2.6
Isotopie Fractionation
550
6.6.2.7
Polycyclic Aromatic Hydrocarbons (PAHs) and
Fullerenes
552
6.7
Dynamical Gas Bags in the Interstellar Medium
554
6.7.1
An Introduction to Shocks
554
6.7.1.1
The Rankine-Hugoniot Conditions for
Shocks
555
6.7.1.2
Magnetic Shocks
558
6.7.1.3
Magnetic Shocks in a Partially Ionized Medium:
/
and
С
Shocks
561
6.7.1.4
Radiative Shocks
562
6.7.1.5
Shock Precursors
563
6.7.1.6
Shock Chemistry
564
6.7.2
Ionization Fronts and
Photodissociation
Regions
565
6.7.3
Static
H
II Regions:
Strömgren
Spheres
567
6.7.3.1
Time-Dependent
Strömgren
Spheres
568
6.7.3.2
Compact
H
II Regions
571
6.7.4
Expanding
H
II Regions: Dynamics Driven by Radiative
Heating
571
6.7.4.1
Blisters, Champagne Flows, and Bubbles
574
6.7.5
Stellar Explosions and Their Remnants
574
6.7.5.1
Free Expansion and Transition to the
Sedov-Taylor Solution
577
6.7.5.2
Stalled Shocks and Stagnation Pressure
577
6.7.6
Snowplow Phase
579
6.7.7
Stellar Wind Bubble
580
6.7.8
Producing the Hot Diffuse Gas
580
6.7.9
Pressure-Driven Expansion of a Planetary Nebula
581
6.7.9.1
Breakup of the Shock Front
582
6.8
Instabilities and the Formation of Structure
582
6.8.1
Gravito-acoustic Waves: The Jeans Instability
583
6.8.1.1
Magnetized Clouds, Ambipolar Diffusion, and the
Jeans Criterion
586
6.8.1.2
Equilibrium of Pressure-Bounded Spheres
589
6.8.1.3
Relation to Star Formation
590
6.8.2
Thermal Instability and Multiple Phases
590
6.8.3
Pressure-Modified Gravitational Collapse
597
6.8.4
Angular Momentum
599
CONTENTS xv
6.9
Large-Scale
Distribution
of the
Gas 599
6.9.1
Buoyancy and the Rayleigh-Taylor Instability
600
6.9.2
The Parker Instability
600
6.10
Turbulence in the Interstellar Medium
602
6.10.1
The Role of Dissipation: The Kolmogorov
Spectrum
603
6.10.2
The Role of Magnetic Fields: The Kraichnan
Spectrum
606
6.10.3
Driving the Turbulence
607
6.10.4
Confronting Observations
608
6.A Synchrotron Spectra: Some Details
614
6.B The Parker Instability: Some Details
618
6.C Dimensional Analysis and Similarity Solutions of the
Hydrodynamic Equations: Some Details
621
6.C.1 Dimensionless Dynamical Equations
621
6.D The Velocity Correlation Tensor and Representation of
Turbulent Flows: Some Details
624
6.D.1 Time Dependence
627
7
Our Galaxy and Others as Stellar Systems
629
7.1
The Galaxy as a Stellar System: Introductory Remarks
629
7.1.1
The Composite HR Diagram of Field Stars
631
7.1.2
Aggregates: Open Clusters, OB Associations, and
Globular Clusters
633
7.1.3
Stellar Hydrodynamics
637
7.1.3.1
The Stellar Velocity Distribution
640
7.1.3.2
The Equations of Motion
642
7.1.3.3
Modeling the Galactic Disk
644
7.1.4
The Halo
647
7.2
Large-Scale Structure of the Galaxy
649
7.2.1
Galactic Rotation
649
7.2.2
Determination of Solar Galactocentric Distance
650
7.2.2.1
Kinematics from Dynamics
651
7.2.2.2
Observable Consequences: The Oort Laws for
Galactic Rotation
655
7.2.3
Spiral Structure
660
7.2.3.1
Observations
660
7.2.3.2
Departures from Symmetry: Density Waves and
Bars
661
7.3
Chemical Evolution of the Galaxy
669
7.3.1
Evidence for Metallicity Evolution
670
7.3.2
Inputs
672
7.3.2.1
The Initial Mass Function
672
7.3.2.2
The Star Formation Rate
673
CONTENTS
7.3.3 Stellar
Populations and Population
Synthesis
675
7.3.4
Models for Galactic Chemical Evolution
677
7.3.4.1
Closed-Box Models
677
7.4.3.2
Primary versus Secondary Elements
679
73.4.3
Spallation: Cosmic Rays and Light-Element
Synthesis
680
7.3.4.4
The Lowest-Metallicity Fossils
682
7.3.4.5
Feedback and Stimulated Star Formation
683
7.3.4.6
Some Process Affecting Evolution of the
Gaseous Component
685
7.3.5
Nucleocosmochronology
688
7.4
Galaxies and Clusters of Galaxies: Introductory Remarks
689
7.5
The Hubble Classification Scheme for Galaxies
690
7.5.1
Spirals: Active Star Formation and Global Patterns
690
7.5.2
Ellipticals: Frozen Populations
692
7.5.2.1
The Fundamental Plane
694
7.5.3
Irregulars and Dwarfs: Stochastic Experiments
695
7.6
Rotation Curves: Bright Flow Tracers and Dark Matter
697
7.7
The Complications: Peculiar Galaxies
700
7.7.1
Active Galactic Nuclei
(AGN)
700
7.7.1.1
Taxonomy
700
7.7.1.2
Supermassive
Black Holes: The Central
Engine
703
7.7.1.3
Reverberation Mapping and Size of the
Emitting Region
706
7.7.1.4
Central Engine Luminosities
707
7.7.2
Radio Galaxies
708
7.7.2.1
Minimum Energy: Estimating Properties of the
Emitting Regions
708
7.7.2.2
Unsteady Synchrotron Sources: Time
Evolution
711
7.7.2.3
Jets and Lobes
713
7.7.2.4
Superluminal Motions and Beaming
713
7.7.3
Interacting Galaxies
715
7.8
Clusters of Galaxies
719
7.8.1
The Local Group
720
7.8.2
Applications of the Virial Theorem to Clusters
720
7.8.3
Х
-Ray Emission from Clusters of Galaxies
723
7.8.3.1
Evidence for Intracluster Gas from Radio
Galaxies
728
7.8.4
Gravitational Lensing by Clusters and Dark Matter
730
7.A Deprojection Methods: Abel s Equation and Inversion of Surface
Measurements
731
CONTENTS xvii
8
The Biggest Picture: Cosmology
734
8.1
Introductory Remarks
734
8.2
The Distance Scale
740
8.2.1
Overview
740
8.2.2
The Cepheid Distance Calibration
742
8.2.3
Outburst Calibrators
744
8.2.3.1
Classical Novae and
Supernovae 744
8.2.3.2 Supernovae
Type la
746
8.2.3.3
Supernova Remnants
747
8.2.4
Calibrators Based on Global Galactic Properties
747
8.2.4.1
Tully-Fisher Linewidth-Luminosity
Relation
747
8.2.4.2
Faber-Jackson Velocity Dispersion-Luminosity
Relation
748
8.2.5 Maser
Proper Motions
749
8.2.6
Surface Brightness Fluctuations
749
8.2.7
Luminosity Functions and Statistical Distance
Calibrators: Internal Galactic Properties
750
8.2.7.1
Luminosity Functions of Planetary Nebulae and
Globular Clusters
750
8.2.7.2
H
II Region Sizes
751
8.2.7.3
Schechter Function for Galaxy Clusters
751
8.3
Fundamental Parameters: The Redshift and the Hubble
Constant
752
8.3.1
The Redshift (z)
752
8.3.2
Current Results for the Hubble Constant
753
8.3.3
Absolute Age Calibrations: Decay of Radioactive
Elements
754
8.3.4
Cosmological Corrections to Galaxy Properties and the
Redshift
755
8.4
Relativistic Cosmology
757
8.4.1
Derivation of the Metric
758
8.4.1.1
First Pass: Differential Geometry
758
8.4.1.2
Second Pass: Symmetries and the Bulling
Vectors
759
8.4.1.3
Third Pass: The Field Equation
760
8.4.2
The Redshift from the Friedmann-Robertson-Waiker
Metric: Interpreting the Hubble Law
763
8.5
Cosmological Models and Evolution of the Scale Factor
765
8.5.1
The
Friedmann-Robertson-Walker (FRW)
Evolution
Equations
766
8.5.2
Choosing the Equation of State
768
8.6
Cosmic Background Radiation
(CBR)
769
8.6.1
The Past
769
xviii CONTENTS
8.6.2
Current
Status 770
8.6.2.1
The Future
771
8.6.3
Coupling between Matter and Radiation:
Formation of
CBR
772
8.6.4
A New Complication: The Cosmological
Constant
(Л)
774
8.6.4.1
An Aside on
Λ
and the Physical
Constants
775
8.6.5
The Density Parameter:
О
776
8.6.6
World Models: Solutions to the FRW Equations
778
8.6.6.1
Matter-Dominated Universe: The
Friedmann
Model
779
8.6.6.2
Radiation-Dominated Universe: The
Tolman
Model
780
8.6.6.3
Initial Conditions
781
8.6.7
Linking the Scale Factor to Observations and Tests of
Cosmological Models
783
8.6.7.1
Lookback
Time, Proper Distances, and
Horizons
783
8.6.8
Inflation
790
8.6.9
A Note on Radiative Transfer in an Expanding
Universe
795
8.6.9.1
Applications: The Gunn-Peterson Test for
Lyman Continuum Absorption
796
8.6.9.2
Applications: Cosmological Lyman a
Absorption Lines
797
8.6.10
Primordial Nucleosynthesis
798
8.7
Large Structures in the Universe
805
8.7.1
Observational Constraints on the Large-Scale
Structure
806
8.7.1.1
The Darkness of the Night Sky
806
8.7.1.2
Tests of Distributed Properties: V/Vmax and the
Malmquist
Bias
807
8.7.1.3
The Hubble Deep-Field Survey and Related
Studies
808
8.7.1.4
Redshift Surveys
809
8.7.1.5
Redshift Surveys and the History of Star
Formation
810
8.7.1.6
A Comment on Catalogs and Distributions
811
8.7.1.7
Dark Matter and Catalogs
811
8.7.1.8
Supernovae,
Л,
and Dark Energy
814
8.7.2
Finding Structures: Correlation Functions
815
8.7.3
Forming Structures in an Expanding Universe
817
CONTENTS xix
8.7.3.1 Gravito-acoustic (Jeans)
Instability in an
Expanding Universe
818
8.7.4 Limits
to Growth
822
8.7.4.1
Radiative Scattering and Damping: The Silk
Mass
822
8.7.4.2
Reionization of the Universe
823
8.7.4.3
The Role(s) of
Λ
826
8.7.5
Nonlinear Evolution of Density Fluctuations
826
8.7.6
Background Fluctuations and
CBR
Variations
830
8.7.6.1
The Sachs-Wolfe Effect
832
8.7.6.2
The Sunyaev-Zeldovich Effect
833
8.7.7
Whence These Perturbations?
834
8.8
Cosmological Gravitational Lenses
836
8.9
Exeunt
841
8.A Gamma-Ray Bursts
842
8.B Newtonian Derivation of the Evolution Equations
844
8.C Galaxy Formation and ADM Scenarios
845
Index
849
|
any_adam_object | 1 |
author | Shore, Steven N. 1953- |
author_GND | (DE-588)113534868 |
author_facet | Shore, Steven N. 1953- |
author_role | aut |
author_sort | Shore, Steven N. 1953- |
author_variant | s n s sn sns |
building | Verbundindex |
bvnumber | BV014521793 |
callnumber-first | Q - Science |
callnumber-label | QB461 |
callnumber-raw | QB461 |
callnumber-search | QB461 |
callnumber-sort | QB 3461 |
callnumber-subject | QB - Astronomy |
classification_rvk | US 2000 |
ctrlnum | (OCoLC)49902167 (DE-599)BVBBV014521793 |
dewey-full | 523.01 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.01 |
dewey-search | 523.01 |
dewey-sort | 3523.01 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01588nam a2200385zc 4500</leader><controlfield tag="001">BV014521793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030526 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020605s2003 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002072158</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471168165</subfield><subfield code="9">0-471-16816-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49902167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014521793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB461</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.01</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 2000</subfield><subfield code="0">(DE-625)146681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shore, Steven N.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113534868</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The tapestry of modern astrophysics</subfield><subfield code="c">Steven N. Shore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 861 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The scope of modern astrophysics is the entire cosmos and everything in it. 'The tapestry of modern astrophysics' provides advances undergraduates or graduate-level students with a comprehensive introduction to the subject"--from p. [4] of cover.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Astrophysik</subfield><subfield code="0">(DE-588)4003326-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Astrophysik</subfield><subfield code="0">(DE-588)4003326-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009887036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009887036</subfield></datafield></record></collection> |
id | DE-604.BV014521793 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:03:14Z |
institution | BVB |
isbn | 0471168165 |
language | English |
lccn | 2002072158 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009887036 |
oclc_num | 49902167 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR |
owner_facet | DE-20 DE-355 DE-BY-UBR |
physical | XXVI, 861 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Wiley-Interscience |
record_format | marc |
spelling | Shore, Steven N. 1953- Verfasser (DE-588)113534868 aut The tapestry of modern astrophysics Steven N. Shore Hoboken, NJ Wiley-Interscience 2003 XXVI, 861 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier "The scope of modern astrophysics is the entire cosmos and everything in it. 'The tapestry of modern astrophysics' provides advances undergraduates or graduate-level students with a comprehensive introduction to the subject"--from p. [4] of cover. Astrophysics Astrophysik (DE-588)4003326-0 gnd rswk-swf Astrophysik (DE-588)4003326-0 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009887036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Shore, Steven N. 1953- The tapestry of modern astrophysics Astrophysics Astrophysik (DE-588)4003326-0 gnd |
subject_GND | (DE-588)4003326-0 |
title | The tapestry of modern astrophysics |
title_auth | The tapestry of modern astrophysics |
title_exact_search | The tapestry of modern astrophysics |
title_full | The tapestry of modern astrophysics Steven N. Shore |
title_fullStr | The tapestry of modern astrophysics Steven N. Shore |
title_full_unstemmed | The tapestry of modern astrophysics Steven N. Shore |
title_short | The tapestry of modern astrophysics |
title_sort | the tapestry of modern astrophysics |
topic | Astrophysics Astrophysik (DE-588)4003326-0 gnd |
topic_facet | Astrophysics Astrophysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009887036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shorestevenn thetapestryofmodernastrophysics |