Physical problems solved by the phase-integral method:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2002
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 214 S. Ill., graph. Darst. |
ISBN: | 0521812097 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV014515922 | ||
003 | DE-604 | ||
005 | 20021115 | ||
007 | t | ||
008 | 020603s2002 xxkad|| |||| 00||| eng d | ||
010 | |a 2002071505 | ||
020 | |a 0521812097 |9 0-521-81209-7 | ||
035 | |a (OCoLC)49875117 | ||
035 | |a (DE-599)BVBBV014515922 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-20 |a DE-29T |a DE-11 | ||
050 | 0 | |a QC20.7.W53 | |
082 | 0 | |a 530.12/4 |2 21 | |
084 | |a UK 4500 |0 (DE-625)145802: |2 rvk | ||
084 | |a UK 7500 |0 (DE-625)145803: |2 rvk | ||
100 | 1 | |a Fröman, Nanny |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physical problems solved by the phase-integral method |c Nanny Fröman and Per Olof Fröman |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2002 | |
300 | |a XIII, 214 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a WKB, Approximation | |
650 | 4 | |a Équations d'onde | |
650 | 4 | |a WKB approximation | |
650 | 4 | |a Wave equation | |
650 | 0 | 7 | |a Wellengleichung |0 (DE-588)4065315-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a WKB-Methode |0 (DE-588)4190133-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wellengleichung |0 (DE-588)4065315-8 |D s |
689 | 0 | 1 | |a WKB-Methode |0 (DE-588)4190133-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Fröman, Per Olof |e Verfasser |0 (DE-588)128102977 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009886445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009886445 |
Datensatz im Suchindex
_version_ | 1804129317011062784 |
---|---|
adam_text | PHYSICAL PROBLEMS SOLVED BY THE PHASE-INTEGRAL METHOD NANNY FROMAN AND
PER OLOF FROMAN UNIVERSITY OF UPPSALA, SWEDEN CAMBRIDGE UNIVERSITY PRESS
CONTENTS PREFACE PAGE XI 1 HISTORICAL SURVEY 1 1.1 DEVELOPMENT FROM 1817
TO 1926 1 1.1.1 CARLINI S PIONEERING WORK 1 1.1.2 THE WORK BY LIOUVILLE
AND GREEN 3 1.1.3 JACOBI S CONTRIBUTION TOWARDS MAKING CARLINI S WORK
KNOWN 4 1.1.4 SCHEIBNER S ALTERNATIVE TO CARLINI S TREATMENT OF
PLANETARY MOTION 4 1.1.5 PUBLICATIONS 1895-1912 5 1.1.6 FIRST TRACES OF
A CONNECTION FORMULA 5 1.1.7 PUBLICATIONS 1915-1921 6 1.1.8 BOTH
CONNECTION FORMULAS ARE DERIVED IN EXPLICIT FORM 7 1.1.9 THE METHOD IS
REDISCOVERED IN QUANTUM MECHANICS 7 1.2 DEVELOPMENT AFTER 1926 8 2
DESCRIPTION OF THE PHASE-INTEGRAL METHOD 12 2.1 FORM OF THE WAVE
FUNCTION AND THE ^-EQUATION 12 2.2 PHASE-INTEGRAL APPROXIMATION
GENERATED FROM AN UNSPECIFIED BASE FUNCTION 13 2.3 F-MATRIX METHOD 21
2.3.1 EXACT SOLUTION EXPRESSED IN TERMS OF THE F-MATRIX 22 2.3.2 GENERAL
RELATIONS SATISFIED BY THE F-MATRIX 25 2.3.3 F-MATRIX CORRESPONDING TO
THE ENCIRCLING OF A SIMPLE ZERO OF Q 2 (Z) 2 6 2.3.4 BASIC ESTIMATES 26
2.3.5 STOKES AND ANTI-STOKES LINES 28 2.3.6 SYMBOLS FACILITATING THE
TRACING OF A WAVE FUNCTION IN THE COMPLEX Z-PLANE 29 V VI CONTENTS 2.3.7
REMOVAL OF A BOUNDARY CONDITION FROM THE REAL Z-AXIS TO AN ANTI-STOKES
LINE 30 2.3.8 DEPENDENCE OF THE F-MATRIX ON THE LOWER LIMIT OF
INTEGRATION IN THE PHASE INTEGRAL 32 2.3.9 F-MATRIX EXPRESSED IN TERMS
OF TWO LINEARLY INDEPENDENT SOLUTIONS OF THE DIFFERENTIAL EQUATION 33
2.4 F-MATRIX CONNECTING POINTS ON OPPOSITE SIDES OF A WELL-ISOLATED
TURNING POINT, AND EXPRESSIONS FOR THE WAVE FUNCTION IN THESE REGIONS 35
2.4.1 SYMMETRY RELATIONS AND ESTIMATES OF THE F-MATRIX ELEMENTS 36 2.4.2
PARAMETERIZATION OF THE MATRIX F(JQ, X2) 38 2.4.2.1 CHANGES OF A, SS AND
* WHEN X MOVES IN THE CLASSICALLY FORBIDDEN REGION 40 2.4.2.2 CHANGES
OF A, SS AND * WHEN ** MOVES IN THE CLASSICALLY ALLOWED REGION 41 2.4.2.3
LIMITING VALUES OF A, SS AND * 42 2.4.3 WAVE FUNCTION ON OPPOSITE SIDES
OF A WELL-ISOLATED TURNING POINT 43 2.4.4 POWER AND LIMITATION OF THE
PARAMETERIZATION METHOD 45 2.5 PHASE-INTEGRAL CONNECTION FORMULAS FOR A
REAL, SMOOTH, SINGLE-HUMP POTENTIAL BARRIER 46 2.5.1 EXACT EXPRESSIONS
FOR THE WAVE FUNCTION ON BOTH SIDES OF THE BARRIER 48 2.5.2
PHASE-INTEGRAL CONNECTION FORMULAS FOR A REAL BARRIER 50 2.5.2.1 WAVE
FUNCTION GIVEN AS AN OUTGOING WAVE TO THE LEFT OF THE BARRIER 53 2.5.2.2
WAVE FUNCTION GIVEN AS A STANDING WAVE TO THE LEFT OF THE BARRIER 54 3
PROBLEMS WITH SOLUTIONS 59 3.1 BASE FUNCTION FOR THE RADIAL SCHROEDINGER
EQUATION WHEN THE PHYSICAL POTENTIAL HAS AT THE MOST A COULOMB
SINGULARITY AT THE ORIGIN 59 3.2 BASE FUNCTION AND WAVE FUNCTION CLOSE
TO THE ORIGIN WHEN THE PHYSICAL POTENTIAL IS REPULSIVE AND STRONGLY
SINGULAR AT THE ORIGIN 61 3.3 REFLECTIONLESS POTENTIAL 62 3.4 STOKES AND
ANTI-STOKES LINES 63 3.5 PROPERTIES OF THE PHASE-INTEGRAL APPROXIMATION
ALONG AN ANTI-STOKES LINE 66 CONTENTS VII 3.6 PROPERTIES OF THE
PHASE-INTEGRAL APPROXIMATION ALONG A PATH ON WHICH THE ABSOLUTE VALUE OF
EXP[IW(Z)] IS MONOTONIC IN THE STRICT SENSE, IN PARTICULAR ALONG A
STOKES LINE 66 3.7 DETERMINATION OF THE STOKES CONSTANTS ASSOCIATED WITH
THE THREE ANTI-STOKES LINES THAT EMERGE FROM A WELL ISOLATED, SIMPLE
TRANSITION ZERO 69 3.8 CONNECTION FORMULA FOR TRACING A PHASE-INTEGRAL
WAVE FUNCTION FROM A STOKES LINE EMERGING FROM A SIMPLE TRANSITION ZERO
T TO THE ANTI-STOKES LINE EMERGING FROM T IN THE OPPOSITE DIRECTION 72
3.9 CONNECTION FORMULA FOR TRACING A PHASE-INTEGRAL WAVE FUNCTION FROM
AN ANTI-STOKES LINE EMERGING FROM A SIMPLE TRANSITION ZERO T TO THE
STOKES LINE EMERGING FROM T IN THE OPPOSITE DIRECTION 73 3.10 CONNECTION
FORMULA FOR TRACING A PHASE-INTEGRAL WAVE FUNCTION FROM A CLASSICALLY
FORBIDDEN TO A CLASSICALLY ALLOWED REGION 74 3.11 ONE-DIRECTIONAL NATURE
OF THE CONNECTION FORMULA FOR TRACING A PHASE-INTEGRAL WAVE FUNCTION
FROM A CLASSICALLY FORBIDDEN TO A CLASSICALLY ALLOWED REGION 77 3.12
CONNECTION FORMULAS FOR TRACING A PHASE-INTEGRAL WAVE FUNCTION FROM A
CLASSICALLY ALLOWED TO A CLASSICALLY FORBIDDEN REGION 79 3.13
ONE-DIRECTIONAL NATURE OF THE CONNECTION FORMULAS FOR TRACING A
PHASE-INTEGRAL WAVE FUNCTION FROM A CLASSICALLY ALLOWED TO A CLASSICALLY
FORBIDDEN REGION 81 3.14 VALUE AT THE TURNING POINT OF THE WAVE FUNCTION
ASSOCIATED WITH THE CONNECTION FORMULA FOR TRACING A PHASE-INTEGRAL WAVE
FUNCTION FROM THE CLASSICALLY FORBIDDEN TO THE CLASSICALLY ALLOWED
REGION 83 3.15 VALUE AT THE TURNING POINT OF THE WAVE FUNCTION
ASSOCIATED WITH A CONNECTION FORMULA FOR TRACING THE PHASE-INTEGRAL WAVE
FUNCTION FROM THE CLASSICALLY ALLOWED TO THE CLASSICALLY FORBIDDEN
REGION 87 3.16 ILLUSTRATION OF THE ACCURACY OF THE APPROXIMATE FORMULAS
FOR THE VALUE OF THE WAVE FUNCTION AT A TURNING POINT 88 3.17
EXPRESSIONS FOR THE A-COEFFICIENTS ASSOCIATED WITH THE AIRY FUNCTIONS 91
3.18 EXPRESSIONS FOR THE PARAMETERS A, SS AND * WHEN Q 2 ( Z ) = R( Z ) =
-Z 96 3.19 SOLUTIONS OF THE AIRY DIFFERENTIAL EQUATION THAT AT A FIXED
POINT ON ONE SIDE OF THE TURNING POINT ARE REPRESENTED BY A SINGLE, PURE
PHASE-INTEGRAL FUNCTION, AND THEIR REPRESENTATION ON THE OTHER SIDE OF
THE TURNING POINT 98 CONTENTS 3.20 CONNECTION FORMULAS AND THEIR
ONE-DIRECTIONAL NATURE DEMONSTRATED FOR THE AIRY DIFFERENTIAL EQUATION
102 3.21 DEPENDENCE OF THE PHASE OF THE WAVE FUNCTION IN A CLASSICALLY
ALLOWED REGION ON THE VALUE OF THE LOGARITHMIC DERIVATIVE OF THE WAVE
FUNCTION AT A FIXED POINT X IN AN ADJACENT CLASSICALLY FORBIDDEN REGION
105 3.22 PHASE OF THE WAVE FUNCTION IN THE CLASSICALLY ALLOWED REGIONS
ADJACENT TO A REAL, SYMMETRIC POTENTIAL BARRIER, WHEN THE LOGARITHMIC
DERIVATIVE OF THE WAVE FUNCTION IS GIVEN AT THE CENTRE OF THE BARRIER
107 3.23 EIGENVALUE PROBLEM FOR A QUANTAL PARTICLE IN A BROAD, SYMMETRIC
POTENTIAL WELL BETWEEN TWO SYMMETRIC POTENTIAL BARRIERS OF EQUAL SHAPE,
WITH BOUNDARY CONDITIONS IMPOSED IN THE MIDDLE OF EACH BARRIER 115 3.24
DEPENDENCE OF THE PHASE OF THE WAVE FUNCTION IN A CLASSICALLY ALLOWED
REGION ON THE POSITION OF THE POINT XI IN AN ADJACENT CLASSICALLY
FORBIDDEN REGION WHERE THE BOUNDARY CONDITION *- (XI) = 0 IS IMPOSED 117
3.25 PHASE-SHIFT FORMULA 121 3.26 DISTANCE BETWEEN NEAR-LYING ENERGY
LEVELS IN DIFFERENT TYPES OF PHYSICAL SYSTEMS, EXPRESSED EITHER IN TERMS
OF THE FREQUENCY OF CLASSICAL OSCILLATIONS IN A POTENTIAL WELL OR IN
TERMS OF THE DERIVATIVE OF THE ENERGY WITH RESPECT TO A QUANTUM NUMBER
123 3.27 ARBITRARY-ORDER QUANTIZATION CONDITION FOR A PARTICLE IN A
SINGLE-WELL POTENTIAL, DERIVED ON THE ASSUMPTION THAT THE CLASSICALLY
ALLOWED REGION IS BROAD ENOUGH TO ALLOW THE USE OF A CONNECTION FORMULA
125 3.28 ARBITRARY-ORDER QUANTIZATION CONDITION FOR A PARTICLE IN A
SINGLE-WELL POTENTIAL, DERIVED WITHOUT THE ASSUMPTION THAT THE
CLASSICALLY ALLOWED REGION IS BROAD 127 3.29 DISPLACEMENT OF THE ENERGY
LEVELS DUE TO COMPRESSION OF AN ATOM (SIMPLE TREATMENT) 130 3.30
DISPLACEMENT OF THE ENERGY LEVELS DUE TO COMPRESSION OF AN ATOM
(ALTERNATIVE TREATMENT) 133 3.31 QUANTIZATION CONDITION FOR A PARTICLE
IN A SMOOTH POTENTIAL WELL, LIMITED ON ONE SIDE BY AN IMPENETRABLE WALL
AND ON THE OTHER SIDE BY A SMOOTH, INFINITELY THICK POTENTIAL BARRIER,
AND IN PARTICULAR FOR A PARTICLE IN A UNIFORM GRAVITATIONAL FIELD
LIMITED FROM BELOW BY AN IMPENETRABLE PLANE SURFACE 137 CONTENTS IX 3.32
ENERGY SPECTRUM OF A NON-RELATIVISTIC PARTICLE IN A POTENTIAL
PROPORTIONAL TO COT 2 (X/AO), WHERE 0 X/AO * AND A$ IS A QUANTITY
WITH THE DIMENSION OF LENGTH, E.G. THE BOHR RADIUS 140 3.33
DETERMINATION OF A ONE-DIMENSIONAL, SMOOTH, SINGLE-WELL POTENTIAL FROM
THE ENERGY SPECTRUM OF THE BOUND STATES 142 3.34 DETERMINATION OF A
RADIAL, SMOOTH, SINGLE-WELL POTENTIAL FROM THE ENERGY SPECTRUM OF THE
BOUND STATES 144 3.35 DETERMINATION OF THE RADIAL, SINGLE-WELL
POTENTIAL, WHEN THE ENERGY EIGENVALUES ARE *MZ 2 E 4 /[2H 2 (L + S + L)
2 ], WHERE I IS THE ANGULAR MOMENTUM QUANTUM NUMBER, AND S IS THE RADIAL
QUANTUM NUMBER 147 3.36 EXACT FORMULA FOR THE NORMALIZATION INTEGRAL FOR
THE WAVE FUNCTION PERTAINING TO A BOUND STATE OF A PARTICLE IN A RADIAL
POTENTIAL 150 3.37 PHASE-INTEGRAL FORMULA FOR THE NORMALIZED RADIAL WAVE
FUNCTION PERTAINING TO A BOUND STATE OF A PARTICLE IN A RADIAL
SINGLE-WELL POTENTIAL 152 3.38 RADIAL WAVE FUNCTION X(F(Z) FOR AN
-ELECTRON IN A CLASSICALLY ALLOWED REGION CONTAINING THE ORIGIN, WHEN
THE POTENTIAL NEAR THE ORIGIN IS DOMINATED BY A STRONG, ATTRACTIVE
COULOMB SINGULARITY, AND THE NORMALIZATION FACTOR IS CHOSEN SUCH THAT,
WHEN THE RADIAL VARIABLE Z IS DIMENSIONLESS, IR{Z)/Z TENDS TO UNITY AS Z
TENDS TO ZERO 155 3.39 QUANTIZATION CONDITION, AND VALUE OF THE
NORMALIZED WAVE FUNCTION AT THE ORIGIN EXPRESSED IN TERMS OF THE LEVEL
DENSITY, FOR AN -ELECTRON IN A SINGLE-WELL POTENTIAL WITH A STRONG
ATTRACTIVE COULOMB SINGULARITY AT THE ORIGIN 160 3.40 EXPECTATION VALUE
OF AN UNSPECIFIED FUNCTION F(Z) FOR A NON-RELATIVISTIC PARTICLE IN A
BOUND STATE 163 3.41 SOME CASES IN WHICH THE PHASE-INTEGRAL EXPECTATION
VALUE FORMULA YIELDS THE EXPECTATION VALUE EXACTLY IN THE FIRST-ORDER
APPROXIMATION 166 3.42 EXPECTATION VALUE OF THE KINETIC ENERGY OF A
NON-RELATIVISTIC PARTICLE IN A BOUND STATE. VERIFICATION OF THE VIRIAL
THEOREM 167 3.43 PHASE-INTEGRAL CALCULATION OF QUANTAL MATRIX ELEMENTS
169 3.44 CONNECTION FORMULA FOR A COMPLEX POTENTIAL BARRIER 171 3.45
CONNECTION FORMULA FOR A REAL, SINGLE-HUMP POTENTIAL BARRIER 181 3.46
ENERGY LEVELS OF A PARTICLE IN A SMOOTH DOUBLE-WELL POTENTIAL, WHEN NO
SYMMETRY REQUIREMENT IS IMPOSED 186 X CONTENTS 3.47 ENERGY LEVELS OF A
PARTICLE IN A SMOOTH, SYMMETRIC, DOUBLE-WELL POTENTIAL 190 3.48
DETERMINATION OF THE QUASI-STATIONARY ENERGY LEVELS OF A PARTICLE IN A
RADIAL POTENTIAL WITH A THICK SINGLE-HUMP BARRIER 192 3.49 TRANSMISSION
COEFFICIENT FOR A PARTICLE PENETRATING A REAL SINGLE-HUMP POTENTIAL
BARRIER 197 3.50 TRANSMISSION COEFFICIENT FOR A PARTICLE PENETRATING A
REAL, SYMMETRIC, SUPERDENSE DOUBLE-HUMP POTENTIAL BARRIER 200 REFERENCES
205 AUTHOR INDEX 209 SUBJECT INDEX 211
|
any_adam_object | 1 |
author | Fröman, Nanny Fröman, Per Olof |
author_GND | (DE-588)128102977 |
author_facet | Fröman, Nanny Fröman, Per Olof |
author_role | aut aut |
author_sort | Fröman, Nanny |
author_variant | n f nf p o f po pof |
building | Verbundindex |
bvnumber | BV014515922 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.W53 |
callnumber-search | QC20.7.W53 |
callnumber-sort | QC 220.7 W53 |
callnumber-subject | QC - Physics |
classification_rvk | UK 4500 UK 7500 |
ctrlnum | (OCoLC)49875117 (DE-599)BVBBV014515922 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01841nam a2200505zc 4500</leader><controlfield tag="001">BV014515922</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020603s2002 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002071505</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521812097</subfield><subfield code="9">0-521-81209-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49875117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014515922</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.W53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 7500</subfield><subfield code="0">(DE-625)145803:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fröman, Nanny</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical problems solved by the phase-integral method</subfield><subfield code="c">Nanny Fröman and Per Olof Fröman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 214 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WKB, Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations d'onde</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WKB approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave equation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fröman, Per Olof</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128102977</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009886445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009886445</subfield></datafield></record></collection> |
id | DE-604.BV014515922 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:03:13Z |
institution | BVB |
isbn | 0521812097 |
language | English |
lccn | 2002071505 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009886445 |
oclc_num | 49875117 |
open_access_boolean | |
owner | DE-20 DE-29T DE-11 |
owner_facet | DE-20 DE-29T DE-11 |
physical | XIII, 214 S. Ill., graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Fröman, Nanny Verfasser aut Physical problems solved by the phase-integral method Nanny Fröman and Per Olof Fröman 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2002 XIII, 214 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier WKB, Approximation Équations d'onde WKB approximation Wave equation Wellengleichung (DE-588)4065315-8 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf WKB-Methode (DE-588)4190133-2 gnd rswk-swf Wellengleichung (DE-588)4065315-8 s WKB-Methode (DE-588)4190133-2 s DE-604 Pfadintegral (DE-588)4173973-5 s Fröman, Per Olof Verfasser (DE-588)128102977 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009886445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fröman, Nanny Fröman, Per Olof Physical problems solved by the phase-integral method WKB, Approximation Équations d'onde WKB approximation Wave equation Wellengleichung (DE-588)4065315-8 gnd Pfadintegral (DE-588)4173973-5 gnd WKB-Methode (DE-588)4190133-2 gnd |
subject_GND | (DE-588)4065315-8 (DE-588)4173973-5 (DE-588)4190133-2 |
title | Physical problems solved by the phase-integral method |
title_auth | Physical problems solved by the phase-integral method |
title_exact_search | Physical problems solved by the phase-integral method |
title_full | Physical problems solved by the phase-integral method Nanny Fröman and Per Olof Fröman |
title_fullStr | Physical problems solved by the phase-integral method Nanny Fröman and Per Olof Fröman |
title_full_unstemmed | Physical problems solved by the phase-integral method Nanny Fröman and Per Olof Fröman |
title_short | Physical problems solved by the phase-integral method |
title_sort | physical problems solved by the phase integral method |
topic | WKB, Approximation Équations d'onde WKB approximation Wave equation Wellengleichung (DE-588)4065315-8 gnd Pfadintegral (DE-588)4173973-5 gnd WKB-Methode (DE-588)4190133-2 gnd |
topic_facet | WKB, Approximation Équations d'onde WKB approximation Wave equation Wellengleichung Pfadintegral WKB-Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009886445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fromannanny physicalproblemssolvedbythephaseintegralmethod AT fromanperolof physicalproblemssolvedbythephaseintegralmethod |