Exact solutions of Einstein's field equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2003
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | Publisher description Table of contents Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXIX, 701 S. graph. Darst. |
ISBN: | 0521461367 9780521467025 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV014509874 | ||
003 | DE-604 | ||
005 | 20170502 | ||
007 | t | ||
008 | 020603s2003 xxud||| |||| 00||| eng d | ||
010 | |a 2002071495 | ||
020 | |a 0521461367 |9 0-521-46136-7 | ||
020 | |a 9780521467025 |9 978-0-521-46702-5 | ||
035 | |a (OCoLC)49844219 | ||
035 | |a (DE-599)BVBBV014509874 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-11 |a DE-384 |a DE-703 |a DE-20 |a DE-355 |a DE-19 |a DE-83 | ||
050 | 0 | |a QC173.6 | |
050 | 0 | |a QC173.6.E96 2003 | |
082 | 0 | |a 530.11 | |
082 | 0 | |a 530.11 |2 21 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UH 8300 |0 (DE-625)145781: |2 rvk | ||
084 | |a PHY 042f |2 stub | ||
100 | 1 | |a Stephani, Hans |d 1935-2003 |e Verfasser |0 (DE-588)1025772032 |4 aut | |
245 | 1 | 0 | |a Exact solutions of Einstein's field equations |c Hans Stephani ... |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2003 | |
300 | |a XXIX, 701 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Einstein-Feldgleichungen | |
650 | 4 | |a Einstein, Équations du champ d' - Solutions numériques | |
650 | 4 | |a Espace et temps | |
650 | 4 | |a Ondes gravitationnelles | |
650 | 4 | |a Relativité générale (Physique) | |
650 | 4 | |a Einstein field equations |x Numerical solutions | |
650 | 4 | |a General relativity (Physics) | |
650 | 4 | |a Gravitational waves | |
650 | 4 | |a Space and time | |
650 | 0 | 7 | |a Einstein-Feldgleichungen |0 (DE-588)4013941-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Exakte Lösung |0 (DE-588)4348289-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Einstein-Feldgleichungen |0 (DE-588)4013941-4 |D s |
689 | 0 | 1 | |a Exakte Lösung |0 (DE-588)4348289-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/description/cam031/2002071495.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/toc/cam031/2002071495.html |3 Table of contents | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009884584&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009884584 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804129314012135424 |
---|---|
adam_text | Contents
Preface
xix
List of tables
xxiii
Notation
xxvii
1
Introduction
1
1.1
What are exact solutions, and why study them?
1
1.2
The development of the subject
3
1.3
The contents and arrangement of this book
4
1.4
Using this book as a catalogue
7
Part I: General methods
9
2
Differential geometry without a metric
9
2.1
Introduction
9
2.2
Differentiable manifolds
10
2.3
Tangent vectors
12
2.4
One-forms
13
2.5
Tensors
15
2.6
Exterior products and p-forms
17
2.7
The exterior derivative
18
2.8
The Lie derivative
21
2.9
The covariant derivative
23
2.10
The curvature tensor
25
2.11
Fibre bundles
27
vii
viii Contents
3
Some topics in Riemannian geometry
30
3.1
Introduction
30
3.2
The metric tensor and tetrads
30
3.3
Calculation of curvature from the metric
34
3.4
Bivectors
35
3.5
Decomposition of the curvature tensor
37
3.6
Spinors
40
3.7
Conformai
transformations
43
3.8
Discontinuities and junction conditions
45
4
The
Petrov
classification
48
4.1
The eigenvalue problem
48
4.2
The
Petrov
types
49
4.3
Principal null directions and determination of the
Petrov
types
53
5
Classification of the
Ricci
tensor and the
energy-momentum tensor
57
5.1
The algebraic types of the
Ricci
tensor
57
5.2
The energy-momentum tensor
60
5.3
The energy conditions
63
5.4
The Ramich conditions
64
5.5
Perfect fluids
65
6
Vector fields
68
6.1
Vector fields and their invariant classification
68
0.1.1
Timelike unit vector fields
70
6.1.2
Geodesic null vector fields
70
6.2
Vector fields and the curvature tensor
72
6.2.1
Timelike unit vector fields
72
6.2.2
Null vector fields
74
7
The Newman—Penrose and related
formalisms
75
7.1
The spin coefficients and their transformation
laws
75
7.2
The
Rìcci
equations
78
7.3
The
Bianchi
identities
81
7.4
The GHP calculus
84
7.5
Geodesic null congruences
86
7.6
The Goldberg-Sachs theorem and its generalizations
87
Contents ix
8
Continuous groups of transformations; isometry
and homothety groups
91
8.1
Lie groups and Lie algebras
91
8.2
Enumeration of distinct group structures
95
8.3
Transformation groups
97
8.4
Groups of motions
98
8.5
Spaces of constant curvature
101
8.6
Orbits of isometry groups
104
8.6.1
Simply-transitive groups
105
8.6.2
Multiply-transitive groups
106
8.7
Homothety groups
110
9
Invariants and the characterization of geometries
112
9.1
Scalar invariants and covariants
113
9.2
The Cartan equivalence method for space-times
116
9.3
Calculating the Cartan scalars
120
9.3.1
Determination of the
Petrov
and
Segre
types
120
9.3.2
The remaining steps
124
9.4
Extensions and applications of the Cartan method
125
9.5
Limits of families of space-times
126
10
Generation techniques
129
10.1
Introduction
129
10.2
Lie symmetries of Einstein s equations
129
10.2.1
Point transformations and their generators
129
10.2.2
How to find the Lie point symmetries of a given
differential equation
131
10.2.3
How to use Lie point symmetries: similarity
reduction
132
10.3
Symmetries more general than Lie symmetries
134
10.3.1
Contact and Lie—
Bäcklund
symmetries
134
10.3.2
Generalized and potential symmetries
134
10.4
Prolongation
137
10.4.1
Integral manifolds of differential forms
137
10.4.2
Isovectors. similarity solutions and conservation laws
140
10.4.3
Prolongation structures
141
10.5
Solutions of the linearized equations
145
10.6
Bäcklund
transformations
146
10.7
Riemann-Hilbert problems
148
10.8
Harmonic maps
148
10.9
Variational
Bäcklund
transformations
151
10.10
Hirota^s
method
152
x
Contents
10.11 Generation
methods including perfect fluids
152
10.11.1
Methods using the existence of Killing vectors
152
10.11.2
Conformai
transformations
155
Part II: Solutions with groups of motions
157
11
Classification of solutions with isometries or
homotheties
157
11.1
The possible space-times with isometries
157
11.2
Isotropy and the curvature tensor
159
11.3
The possible space-times with proper
homothetic motions
162
11.4
Summary of solutions with homotheties
167
12
Homogeneous space-times
171
12.1
The possible metrics
171
12.2
Homogeneous vacuum and null Einstein-Maxwell space-times
174
12.3
Homogeneous non-null electromagnetic fields
175
12.4
Homogeneous perfect fluid solutions
177
12.5
Other homogeneous solutions
180
12.6
Summary
181
13
Hypersurface-homogeneous space-times
183
13.1
The possible metrics
183
13.1.1
Metrics with a G6 on
У3
183
13.1.2
Metrics with a G4 on V3
183
13.1.3
Metrics with a G3 on V3
187
13.2
Formulations of the field equations
188
13.3
Vacuum,
Л
-term
and Einstein-Maxwell solutions
194
13.3.1
Solutions with multiply-transitive groups
194
13.3.2
Vacuum spaces with a G3 on V3
196
13.3.3
Einstein spaces with a G3 on V3
199
13.3.4
Einstein-Maxwell solutions with a G3 on
У3
201
13.4
Perfect fluid solutions homogeneous on T3
204
13.5
Summary of all metrics with Gr on F3
207
14
Spatially-homogeneous perfect fluid cosmologies
210
14.1
Introduction
210
14.2
Robertson-Walker cosmologies
211
14.3
Cosmologies with a G4 on
S3 214
14.4
Cosmologies with a G3 on
S3 218
Contents xi
15
Groups
G3
on non-null orbits V2· Spherical
and plane symmetry
226
15.1
Metric, Killing vectors, and
Ricci
tensor
226
15.2
Some implications of the existence of an isotropy
group
h
228
15.3
Spherical and plane symmetry
229
15.4
Vacuum, Einstein-Maxwell and pure radiation fields
230
15.4.1
Timelike orbits
230
15.4.2
Spacelike orbits
231
15.4.3
Generalized Birkhoff theorem
232
15.4.4
Spherically- and plane-symmetric fields
233
15.5
Dust solutions
235
15.6
Perfect fluid solutions with plane, spherical or
pseudospherical symmetry
237
15.6.1
Some basic properties
237
15.6.2
Static solutions
238
15.6.3
Solutions without shear and expansion
238
15.6.4
Expanding solutions without shear
239
15.6.5
Solutions with nonvanishing shear
240
15.7
Plane-symmetric perfect, fluid solutions
243
15.7.1
Static solutions
243
15.7.2
Non-static solutions
244
16
Spherically-symmetric perfect fluid solutions
247
16.1
Static solutions
247
16.1.1
Field equations and first integrals
247
16.1.2
Solutions
250
16.2
Non-static solutions
251
16.2.1
The basic equations
251
16.2.2
Expanding solutions without shear
253
16.2.3
Solutions with non-vanishing shear
260
17
Groups
Gì
and G on non-null orbits
264
17.1
Groups G-2 on non-null orbits
264
17.1.1
Subdivisions of the groups G2
264
17.1.2
Groups G2I on non-null orbits
265
17.1.3
G2II on non-null orbits
267
17.2
Boost-rotation-symmetric space-times
268
17.3
Group G on non-null orbits
271
18
Stationary gravitational fields
275
18.1
The projection formalism
275
xii
Contents
18.2
The
Ricci
tensor on
Σ3
277
18.3
Conformai
transformation of
Σ3
and the field equations
278
18 4
Vacuum and Einstein-Maxwell equations for stationary
fields
279
18.5
Geodesic eigenrays
281
18.6
Static fields
283
18.6.1
Definitions
283
18.6.2
Vacuum solutions
284
18.6.3
Electrostatic and magnetostatic Einstein-Maxwell
fields
284
18.6.4
Perfect fluid solutions
286
18.7
The conformastationary solutions
287
18.7.1
Conformastationary vacuum solutions
287
18.7.2
Conformastationary Einstein-Maxwell fields
288
18.8
Multipole moments
289
19
Stationary axisymnaetric fields: basic concepts
and field equations
292
19.1
The Killing vectors
292
19.2
Orthogonal surfaces
293
19.3
The metric and the projection formalism
296
19.4
The field equations for stationary axisymmetric Einstein-
Maxwell fields
298
19.5
Various forms of the field equations for stationary axisym¬
metric vacuum fields
299
19.6
Field equations for rotating fluids
302
20
Stationary axisymmetric vacuum solutions
304
20.1
Introduction
304
20.2
Static axisymmetric vacuum solutions (Weyl s
class)
304
20.3
The class of solutions
U
=
U
(ω)
(Papapetrou s class)
309
20.4
The class of solutions
S
=
S (A)
310
20.5
The Kerr solution and the Tomimatsu-Sato class
311
20.6
Other solutions
313
20.7
Solutions with factor structure
316
21
Non-empty stationary axisymmetric solutions
319
21.1
Einstein-Maxwell fields
319
21.1.1
Electrostatic and magnetostatic solutions
319
21.1.2
Type
D
solutions: A general metric and its limits
322
21.1.3
The Kerr-Newman solution
325
Contents xiii
21.1.4 Complexification
and the Newman-Janis complex
trick
328
21.1.5
Other solutions
329
21.2
Perfect fluid solutions
330
21.2.1
Line element and general properties
330
21.2.2
The general dust solution
331
21.2.3
Rigidly rotating perfect fluid solutions
333
21.2.4
Perfect fluid solutions with differential rotation
337
22
Groups G4I on spacelike orbits: cylindrical
symmetry
341
22.1
General remarks
341
22.2
Stationary cylindrically-symmetric fields
342
22.3
Vacuum fields
350
22.4
Einstein-Maxwell and pure radiation fields
354
23
Inhomogeneous perfect fluid solutions with
symmetry
358
23.1
Solutions with a maximal
Щ
on
Ss
359
23.2
Solutions with a maximal H3 on T3 3G1
23.3
Solutions with a G2 on S2
362
23.3.1
Diagonal metrics 3G3
23.3.2
Non-diagonal solutions with orthogonal transitivity
372
23.3.3
Solutions without orthogonal transitivity
373
23.4
Solutions with a d or a H2
374
24
Groups on null orbits. Plane waves
375
24.1
Introduction
375
24.2
Groups G3 on N3
376
24.3
Groups G2 on N2
377
24.4
Null Killing vectors (d on
N1) 379
24.4.1
Non-
twisting null Killing vector
380
24.4.2
Twisting null Killing vector
382
24.5
The plane-fronted gravitational waves with parallel rays
(pp-waves)
383
25
Collision of plane waves
387
25.1
General features of the collision problem
387
25.2
The vacuum field equations
389
25.3
Vacuum solutions with
collinear
polarization
392
25.4
Vacuum solutions with non-collinear polarization
394
25.5
Einstein-Maxwell fields
397
xiv
Contents
25.6
Stiff perfect fluids and pure radiation
403
25.6.1
Stiff perfect fluids
403
25.6.2
Pure radiation (null dust)
405
Part III: Algebraically special solutions
407
26
The various classes of algebraically special
solutions. Some algebraically general solutions
407
26.1
Solutions of
Petrov
type II, D, III or iV
407
26.2
Petrov
type
.D
solutions
412
26.3
Conformally flat solutions
413
26.4
Algebraically general vacuum solutions with geodesic
and non-twisting rays
413
27
The line element for metrics with
n
=
σ =
0 =
Дії
=
Ru
= #44,
Θ
+
ιω ψ
0 416
27.1
The line element in the case with twisting rays
[ω φ
0) 416
27.1.1
The choice of the null tetrad
416
27.1.2
The coordinate frame
418
27.1.3
Admissible tetrad and coordinate transformations
420
27.2
The line element in the case with non-twisting rays
(ш
= 0) 420
28
Robinson—Trautman solutions
422
28.1
Robinson—Trautman vacuum solutions
422
28.1.1
The field equations and their solutions
422
28.1.2
Special cases and explicit solutions
424
28.2
Robinson-Trautman Einstein-Maxwell fields
427
28.2.1
Line element and field equations
427
28.2.2
Solutions of type III,
N
and
О
429
28.2.3
Solutions of type
D
429
28.2.4
Type II solutions
431
28.3
Robinson-Trautman pure radiation fields
435
28.4
Robinson-Trautman solutions with a cosmological
constant
Л
436
29
Twisting vacuum solutions
437
29.1
Twisting vacuum solutions the field equations
437
29.1.1
The structure of the field equations
437
29.1.2
The integration of the main equations
438
29.1.3
The remaining field equations
440
29.1.4
Coordinate freedom and transformation
properties
441
Contents
XV
29.2
Some general classes of solutions
442
29.2.1
Characterization of the known classes of solutions
442
29.2.2
The case
θζ1
=
dc(G2
-
dçG)
φ
0 445
2
29.2.3
The case
ΘςΙ
=
oç(G2
-
ÕçG)
φ
0.
LM
= 0 446
29.2.4
The case
1 = 0 447
29.2.5
The case I = Q = L.U
449
29.2.6
Solutions
independent of
ζ
and
ζ
450
29.3
Solutions of type
Ν (Φ2
= 0 =
Φ3)
451
29.4
Solutions of type
III
(Φ2
= 0,
Φ3 φ
0) 452
29.5
Solutions of type
Ό (5Φ2*4 = 2Φ§. Φ2 φ
0) 452
29.6
Solutions
of type II
454
30
Twisting Einstein—Maxwell and pure radiation
fields
455
30.1
The structure of the Einstein-Maxwell field equations
455
30.2
Determination of the radial dependence of the metric and the
Maxwell field
456
30.3
The remaining field equations
458
30.4
Charged vacuum metrics
459
30.5
A class of radiative Einstein-Maxwell fields
(ФЅ
φ
0) 460
30.6
Remarks concerning solutions of the different
Petrov
types
461
30.7
Pure radiation fields
463
30.7.1
The field equations
463
30.7.2
Generating pure radiation fields from vacuum by
changing
Ρ
464
30.7.3
Generating pure radiation fields from vacuum by
changing
m
466
30.7.4
Some special classes of pure radiation fields
467
31
Non-diverging solutions (Kundt s class)
470
31.1
Introduction
470
31.2
The line element for metrics with
Θ + ίω =
0 470
31.3
The
Ricci
tensor components
472
31.4
The structure of the vacuum and Einstein-Maxwell
equation
473
31.5
Vacuum solutions
476
31.5.1
Solutions of types III and
N 476
31.5.2
Solutions of types
D
and II
478
31.6
Einstein-Maxwell null fields and pure radiation fields
480
31.7
Einstein-Maxwell non-null fields
481
31.8
Solutions including
a cosmologica!
constant
Λ
483
xvi
Contents
32
Kerr-Schild metrics
485
32.1
General properties of Kerr-Schild metrics
485
32.1.1
The origin of the Kerr-Schild-Trautman ansatz
485
32.1.2
The
Ricci
tensor, Riemann tensor and
Petrov
type
485
32.1.3
Field equations and the energy-momentum tensor
487
32.1.4
A geometrical interpretation of the Kerr-Schild
ansatz
487
32.1.5
The Newman-Penrose formalism for shearfree and
geodesic Kerr-Schild metrics
489
32.2
Kerr-Schild vacuum fields
492
32.2.1
The case
ρ = -(θ + ίω) Φ
0 492
32.2.2
The case
ρ = -(Θ
+
ίω)
= 0 493
32.3 Kerr-Schild Einstein-Maxwell
fields
493
32.3.1
The case
ρ
=
-(Θ
+
ίω) φ
0 493
32.3.2
The case
ρ
=
-(Θ
+
ίω)
= 0 495
32.4
Kerr-Schild pure radiation fields
497
32.4.1
The case
ρ φ Ο, σ
= 0 497
32.4.2
Thecasea^O
499
32.4.3
The case
ρ = σ =
0 499
32.5
Generalizations of the Kerr-Schild ansatz
499
32.5.1
General properties and results
499
32.5.2
Non-flat vacuum to vacuum
501
32.5.3
Vacuum to electrovac
502
32.5.4
Perfect, fluid to perfect fluid
503
33
Algebraically special perfect fluid solutions
506
33.1
Generalized Robinson-Trautman solutions
506
33.2
Solutions with a geodesic, shearfree, non-expanding multiple
null eigenvector
510
33.3
Type
D
solutions
512
33.3.1
Solutions with
к
—
ν =
0 513
33.3.2
Solutions with
κ φ
0,
ν φ
0 513
33.4
Type III and type
N
solutions
515
Part IV: Special methods
518
34
Application of generation techniques to general
relativity
518
34.1
Methods using harmonic maps (potential space
symmetries)
518
34.1.1
Electrovacuum fields with one Killing vector
518
34.1.2
The group SU(2.1)
521
Contents xvii
34.1.3
Complex
invariance transformations
525
34.1.4
Stationary axisymmetric vacuum fields
526
34.2
Prolongation structure
for the Ernst equation
529
34.3
The linearized equations, the Kinnersley-Chitre
В
group and
the Hoenselaers-Kinnersley-Xanthopoulos transformations
532
34.3.1
The field equations
532
34.3.2
Infinitesimal transformations and transformations
preserving Minkowski space
534
34.3.3
The Hoenselaers-Kinnersley-Xanthopoulos transfor¬
mation
535
34.4
Bäcklund
transformations
538
34.5
The Belinski-Zakharov technique
543
34.6
The Riemann-Hilbert problem
547
34.6.1
Some general remarks
547
34.6.2
The Neugebauer-Meinel rotating disc solution
548
34.7
Other approaches
549
34.8
Einstein-Maxwell fields
550
34.9
The case of two space-like Killing vectors
550
35
Special vector and tensor fields
553
35.1
Space-times that admit constant vector and tensor fields
553
35.1.1
Constant vector fields
553
35.1.2
Constant tensor fields
554
35.2
Complex recurrent, conformally recurrent, recurrent and
symmetric spaces
556
35.2.1
The definitions
556
35.2.2
Space-times of
Petrov
type
D
557
35.2.3
Space-times of type
N 557
35.2.4
Space-times of type
О
558
35.3
Killing tensors of order two and Killing-Yano tensors
559
35.3.1
The basic definitions
559
35.3.2
First integrals, separability and Killing or Killing-
Yano tensors
560
35.3.3
Theorems on Killing and Killing-Yano tensors in four-
dimensional space-times
561
35.4
Collineations and
conformai
motions
564
35.4.1
The basic definitions
564
35.4.2
Proper curvature collineations
565
35.4.3
General theorems on
conformai
motions
565
35.4.4
Non-conformally flat solutions admitting proper
conformai
motions
567
xviii
Contents
36
Solutions with special subspaces
571
36.1
The basic formulae
571
36.2
Solutions with flat three-dimensional slices
573
36.2.1
Vacuum solutions
573
36.2.2
Perfect fluid and dust solutions
573
36.3
Perfect fluid solutions with conformally flat slices
577
36.4
Solutions with other intrinsic symmetries
579
37
Local isometric embedding of four-dimensional
Riemannian manifolds
580
37.1
The why of embedding
580
37.2
The basic formulae governing embedding
581
37.3
Some theorems on local isometric embedding
583
37.3.1
General theorems
583
37.3.2
Vector and tensor fields and embedding class
584
37.3.3
Groups of motions and embedding class
586
37.4
Exact solutions of embedding class one
587
37.4.1
The Gauss and
Codazzi
equations and the possible
types of nab
587
37.4.2
Conformally flat perfect fluid solutions of embedding
class one
588
37.4.3
Type
D
perfect fluid solutions of embedding class one
591
37.4.4
Pure radiation field solutions of embedding class one
594
37.5
Exact solutions of embedding class two
596
37.5.1
The
Gauss-Codazzi-Ricci
equations
596
37.5.2
Vacuum solutions of embedding class two
598
37.5.3
Conformally flat solutions
599
37.6
Exact solutions of embedding class
ρ
> 2 603
Part V: Tables
605
38
The interconnections between the main
classification schemes
605
38.1
Introduction
605
38.2
The connection between
Petrov
types and groups of motions
606
38.3
Tables
609
References
615
Index
690
|
any_adam_object | 1 |
author | Stephani, Hans 1935-2003 |
author_GND | (DE-588)1025772032 |
author_facet | Stephani, Hans 1935-2003 |
author_role | aut |
author_sort | Stephani, Hans 1935-2003 |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV014509874 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.6 QC173.6.E96 2003 |
callnumber-search | QC173.6 QC173.6.E96 2003 |
callnumber-sort | QC 3173.6 |
callnumber-subject | QC - Physics |
classification_rvk | SK 370 SK 950 UH 8300 |
classification_tum | PHY 042f |
ctrlnum | (OCoLC)49844219 (DE-599)BVBBV014509874 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02627nam a2200649zc 4500</leader><controlfield tag="001">BV014509874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170502 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020603s2003 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002071495</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521461367</subfield><subfield code="9">0-521-46136-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521467025</subfield><subfield code="9">978-0-521-46702-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49844219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014509874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.6</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.6.E96 2003</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8300</subfield><subfield code="0">(DE-625)145781:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 042f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stephani, Hans</subfield><subfield code="d">1935-2003</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025772032</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact solutions of Einstein's field equations</subfield><subfield code="c">Hans Stephani ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 701 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Einstein-Feldgleichungen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Einstein, Équations du champ d' - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espace et temps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ondes gravitationnelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativité générale (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Einstein field equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General relativity (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitational waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space and time</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Exakte Lösung</subfield><subfield code="0">(DE-588)4348289-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Exakte Lösung</subfield><subfield code="0">(DE-588)4348289-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/cam031/2002071495.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/cam031/2002071495.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009884584&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009884584</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV014509874 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:03:10Z |
institution | BVB |
isbn | 0521461367 9780521467025 |
language | English |
lccn | 2002071495 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009884584 |
oclc_num | 49844219 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-11 DE-384 DE-703 DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-11 DE-384 DE-703 DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 |
physical | XXIX, 701 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Stephani, Hans 1935-2003 Verfasser (DE-588)1025772032 aut Exact solutions of Einstein's field equations Hans Stephani ... 2. ed. Cambridge [u.a.] Cambridge Univ. Press 2003 XXIX, 701 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge monographs on mathematical physics Hier auch später erschienene, unveränderte Nachdrucke Einstein-Feldgleichungen Einstein, Équations du champ d' - Solutions numériques Espace et temps Ondes gravitationnelles Relativité générale (Physique) Einstein field equations Numerical solutions General relativity (Physics) Gravitational waves Space and time Einstein-Feldgleichungen (DE-588)4013941-4 gnd rswk-swf Exakte Lösung (DE-588)4348289-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Einstein-Feldgleichungen (DE-588)4013941-4 s Exakte Lösung (DE-588)4348289-2 s DE-604 http://www.loc.gov/catdir/description/cam031/2002071495.html Publisher description http://www.loc.gov/catdir/toc/cam031/2002071495.html Table of contents Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009884584&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stephani, Hans 1935-2003 Exact solutions of Einstein's field equations Einstein-Feldgleichungen Einstein, Équations du champ d' - Solutions numériques Espace et temps Ondes gravitationnelles Relativité générale (Physique) Einstein field equations Numerical solutions General relativity (Physics) Gravitational waves Space and time Einstein-Feldgleichungen (DE-588)4013941-4 gnd Exakte Lösung (DE-588)4348289-2 gnd |
subject_GND | (DE-588)4013941-4 (DE-588)4348289-2 (DE-588)4123623-3 |
title | Exact solutions of Einstein's field equations |
title_auth | Exact solutions of Einstein's field equations |
title_exact_search | Exact solutions of Einstein's field equations |
title_full | Exact solutions of Einstein's field equations Hans Stephani ... |
title_fullStr | Exact solutions of Einstein's field equations Hans Stephani ... |
title_full_unstemmed | Exact solutions of Einstein's field equations Hans Stephani ... |
title_short | Exact solutions of Einstein's field equations |
title_sort | exact solutions of einstein s field equations |
topic | Einstein-Feldgleichungen Einstein, Équations du champ d' - Solutions numériques Espace et temps Ondes gravitationnelles Relativité générale (Physique) Einstein field equations Numerical solutions General relativity (Physics) Gravitational waves Space and time Einstein-Feldgleichungen (DE-588)4013941-4 gnd Exakte Lösung (DE-588)4348289-2 gnd |
topic_facet | Einstein-Feldgleichungen Einstein, Équations du champ d' - Solutions numériques Espace et temps Ondes gravitationnelles Relativité générale (Physique) Einstein field equations Numerical solutions General relativity (Physics) Gravitational waves Space and time Exakte Lösung Lehrbuch |
url | http://www.loc.gov/catdir/description/cam031/2002071495.html http://www.loc.gov/catdir/toc/cam031/2002071495.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009884584&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stephanihans exactsolutionsofeinsteinsfieldequations |