Functional analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Wiley-Interscience
2002
|
Schriftenreihe: | Pure and applied mathematics
|
Schlagworte: | |
Online-Zugang: | Table of contents Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XIX, 580 Seiten |
ISBN: | 0471556041 9780471556046 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014477237 | ||
003 | DE-604 | ||
005 | 20241108 | ||
007 | t | ||
008 | 020603s2002 xxu |||| 00||| eng d | ||
010 | |a 2001046547 | ||
020 | |a 0471556041 |9 0-471-55604-1 | ||
020 | |a 9780471556046 |9 978-0-471-55604-6 | ||
035 | |a (OCoLC)47767143 | ||
035 | |a (DE-599)BVBBV014477237 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-824 |a DE-703 |a DE-19 |a DE-355 |a DE-29T |a DE-20 |a DE-91G |a DE-634 |a DE-11 |a DE-188 |a DE-83 |a DE-945 | ||
050 | 0 | |a QA320 | |
082 | 0 | |a 515 |2 21 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a MAT 460f |2 stub | ||
084 | |a 46-01 |2 msc | ||
100 | 1 | |a Lax, Peter D. |d 1926- |e Verfasser |0 (DE-588)130442437 |4 aut | |
245 | 1 | 0 | |a Functional analysis |c Peter D. Lax |
264 | 1 | |a New York |b Wiley-Interscience |c 2002 | |
300 | |a XIX, 580 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/wiley021/2001046547.html |3 Table of contents | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009878719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009878719 |
Datensatz im Suchindex
_version_ | 1815151832043880448 |
---|---|
adam_text |
CONTENTS
Foreword
xvii
1. Linear Spaces 1
Axioms
for
linear
spaces
—
Infinite-dimensional examples
—
Subspace, linear
span
—Quotient
space—Isomorphism
—
Convex
sets
—
Extreme subsets
2.
Linear Maps
8
2.1
Algebra of linear maps,
8
Axioms for linear maps
—
Sums and composites
—
Invertible
linear maps
—Nullspace
and range
—
Invariant subspaces
2.2.
Index of a linear map,
12
Degenerate maps
—
Pseudoinverse
—
Index
—
Product formula for
the index
—
Stability of the index
3.
The Hahn-Banach Theorem
19
3.1
The extension theorem,
19
Positive homogeneous,
subadditive functionals—
Extension of
linear functionals
—
Gauge functions of convex sets
3.2
Geometric Hahn-Banach theorem,
21
The
hyperplane
separation theorem
3.3
Extensions of the Hahn-Banach theorem,
24
The Agnew-Morse theorem
—
The
Bohnenblust-Sobczyk-Soukhomlinov theorem
4.
Applications of the Hahn-Banach theorem
29
4.1
Extension of positive linear functionals,
29
4.2
Banach limits,
31
,¡
CONTENTS
4.3
Finitely additive invariant set functions,
33
Historical note,
34
5.
Normed Linear Spaces
36
5.1
Norms,
36
Norms for quotient spaces
—
Complete normed linear spaces
—
The spaces
С, В
—
Lp spaces and Holder's inequality
—
Sobolev
spaces, embedding theorems
—
Separable spaces
5.2
Noncompactness of the unit ball,
43
Uniform convexity
—
The Mazur-Ulam theorem on isometries
5.3
Isometries,
47
6.
Hubert Space
52
6.1
Scalar product,
52
Schwarz
inequality
—
Parallelogram identity
—
Completeness,
closure
—
Ѓ2,
L2
6.2
Closest point in a closed convex subset,
54
Orthogonal complement of a subspace
—
Orthogonal
decomposition
6.3
Linear functionals,
56
The Riesz-Frechet representation theorem
—
Lax-Milgram lemma
6.4
Linear span,
58
Orthogonal projection
—
Orthonormal
bases, Gram-Schmidt
process
—
Isometries of a Hubert space
7.
Applications of Hilbert Space Results
63
7.1
Radon-Nikodym theorem,
63
7.2
Dirichlet's problem,
65
Use of the Riesz-Frechet theorem
—
Use of the Lax-Milgram
theorem
—
Use of orthogonal decomposition
8.
Duals of Normed Linear Spaces
72
8.1
Bounded linear functionals,
72
Dual space
8.2
Extension of bounded linear functionals,
74
Dual characterization of norm
—
Dual characterization of
distance from a subspace
—
Dual characterization of the closed
linear span of a set
CONTENTS
vii
8.3 Reflexive
spaces,
78
Reflexivity
of
Lp,
I
<
ρ
<
ею
—
Separable spaces
—
Separability
of the dual
—
Dual of C(Q),
Q
compact
—
Reflexivity
of
subspaces
8.4
Support function of a set,
83
Dual characterization of convex hull
—
Dual characterization of
distance from a closed, convex set
9.
Applications of Duality
87
9.1
Completeness of weighted powers,
87
9.2
The
Muntz
approximation theorem,
88
9.3
Runge's theorem,
91
9.4
Dual variational problems in function theory,
91
9.5
Existence of Green's function,
94
10.
Weak Convergence
99
10.1
Uniform boundedness of weakly convergent sequences,
101
Principle of uniform boundedness
—
Weakly sequentially
closed convex sets
10.2
Weak sequential compactness,
104
Compactness of unit ball in reflexive space
10.3
Weak* convergence,
105
Helly's theorem
11.
Applications of Weak Convergence
108
11.1
Approximation of the
8
function by continuous functions,
108
Toeplitz's theorem on summability
11.2
Divergence of Fourier series,
109
11.3
Approximate quadrature,
110
11.4
Weak and strong
analyticky
of vector-valued functions,
111
11.5
Existence of solutions of partial differential equations,
112
Galerkin's method
11.6
The representation of analytic functions with positive real part,
115
Herglotz-Riesz theorem
12.
The Weak and Weak* Topologies
118
Comparison with weak sequential topology
—
Closed convex sets
in the weak topology
—
Weak compactness
—
Alaoglu's theorem
viii CONTENTS
13.
Locally
Convex
Topologies and the
Krein-MÜman Theorem 122
13.1
Separation of points by linear functionaLs,
123
13.2
The Krein-Milman theorem,
124
13.3
The Stone-
Weierstrass
theorem,
126
13.4
Choquet's theorem,
128
14.
Examples of Convex Sets and Their Extreme Points
133
14.1
Positive functionals,
133
14.2
Convex functions,
135
14.3
Completely monotone functions,
137
14.4
Theorems of
Carathéodory
and Bochner,
141
14.5
A theorem of Krein,
147
14.6
Positive harmonic functions,
148
14.7
The Hamburger moment problem,
150
14.8
G. Birkhoff's conjecture,
151
14.9 De
Finetti's theorem,
156
14.10
Measure-preserving mappings,
157
Historical note,
159
15.
Bounded Linear Maps
160
15.1
Boundedness and continuity,
160
Norm of a bounded linear map
—
Transpose
15.2
Strong and weak topologies,
165
Strong and weak sequential convergence
15.3
Principle of uniform boundedness,
166
15.4
Composition of bounded maps,
167
15.5
The open mapping principle,
168
Closed graph theorem
Historical note,
172
16.
Examples of Bounded Linear Maps
173
16.1
Boundedness of integral operators,
173
Integral operators of Hilbert-Schmidt type
—
Integral operators of
Holmgren type
16.2
The convexity theorem of Marcel Riesz,
177
16.3
Examples of bounded integral operators,
180
The Fourier transform, Parseval's theorem and Hausdorff-Young
inequality
—
The Hubert transform
—
The Laplace transform
—
The Hilbert-Hankel transform
CONTENTS ix
16.4
Solution
Operators
for hyperbolic equations,
] 86
16.5
Solution operator for the heat equation,
188
16.6
Singular integral operators, pseudodifferential operators and
Fourier integral operators,
190
17.
Banach Algebras and their Elementary Spectral Theory
192
17.1
Normed algebras,
192
Invertible elements
—
Resolvent set and spectrum
—
Resolvent
—
Spectral radius
17.2
Functional calculus,
197
Spectral mapping theorem
—
Projections
18.
Gelfand's Theory of Commutative Banach Algebras
202
Homomorphisms into
С
—
Maximal ideals
—
Mazur's lemma
—
The spectrum as the range of homomorphisms
—
The spectral
mapping theorem revisited
—
The Gelfand representation
—
Gelfand topology
19.
Applications of Gelfand's Theory of Commutative Banach Algebras
2
1
0
19.1
The algebra
Ш),
210
19.2
Gelfand compactification,
210
19.3
Absolutely convergent Fourier series,
212
19.4
Analytic functions in the closed unit disk,
213
Analytic functions in the closed polydisk
19.5
Analytic functions in the open unit disk,
214
19.6
Wiener's Tauberian theorem.
215
19.7
Commutative ^-algebras.
221
Historical note,
224
20.
Examples of Operators and Their Spectra
226
20.
1 Invertible maps.
226
Boundary points of the spectrum
20.2
Shifts.
229
20.3
Volterra integral operators,
230
20.4
The Fourier transform.
231
21.
Compact Maps
233
21.1
Basic properties of compact maps.
233
Compact maps form a two-sided ideal
—
Identity plus
compact map has index zero
χ
CONTENTS
21.2
The spectral theory of compact maps,
238
The transpose of a compact operator is compact
—
The
Fredholm
alternative
Historical note,
244
22.
Examples of Compact Operators
245
22.1
Compactness criteria,
245
Arzela-Ascoli compactness criterion
—
Rellich compactness
criterion
22.2
Integral operators,
246
Hilbert-Schmidt operators
22.3
The inverse of elliptic partial differential operators,
249
22.4
Operators defined by parabolic equations,
250
22.5
Almost orthogonal bases,
251
23.
Positive compact operators
253
23.1
The spectrum of compact positive operators,
253
23.2
Stochastic integral operators,
256
Invariant probability density
23.3
Inverse of a second order elliptic operator,
258
24. Fredholm 's Theo ryof
Integral Equations
260
24.1
The
Fredholm
determinant and the
Fredholm
resolvent,
260
The spectrum of
Fredholm
operators
—
A trace formula for
Fredholm
operators
24.2
The multiplicative property of the Fredholm determinant,
268
24.3
The Gelfand-Levitan-Marchenko equation and Dyson's
formula,
271
25.
Invariant Subspaces
275
25.1
Invariant subspaces of compact maps,
275
The
von Neumann-Aronszajn-Smith
theorem
25.2
Nested invariant subspaces,
277
Ringrose's theorem
—
Unicellular operators: the
Brodsky-Donoghue theorem
—
The Robinson-Bernstein and
Lomonsov theorems
—
Enflons
example
26.
Harmonic Analysis on
a
Halfline 284
26.1
The
Phragmén-Lindelöf
principle for harmonic functions,
284
CONTENTS xi
26.2 An
abstract
Pragmén-Lindelöf
principle,
285
Interior compactness
26.3
Asymptotic expansion,
297
Solutions of elliptic differential equations in a half-cylinder
27.
Index Theory
300
27.1
The Noether index,
301
Pseudoinverse
—
Stability of index
—
Product formula
—
Hörmander's
stability theorem
Historical note,
305
27.2
Toeplitz operators,
305
Index-winding number
—
The inversion of Toeplitz operators
—
Discontinuous symbols
—
Matrix Toeplitz operators
27.3
Hankel operators,
312
28.
Compact Symmetric Operators in Hubert Space
315
Variational principle for eigenvalues
—
Completeness of
eigenfunctions
—
The variational principles of Fisher and
Courant
—
Functional calculus
—
Spectral theory of compact
normal operators
—
Unitary operators
29.
Examples of Compact Symmetric Operators
323
29.1
Convolution,
323
29.2
The inverse of a differential operator,
326
29.3
The inverse of partial differential operators,
327
30.
Trace Class and Trace Formula
329
30.1
Polar decomposition and singular values,
329
30.2
Trace class, trace norm, and trace,
330
Matrix trace
30.3
The trace formula,
334
Weyľs
inequalities
—
Lidskii's theorem
30.4
The determinant,
341
30.5
Examples and counterexamples of trace class operators,
342
Mercer's theorem
—
The trace of integral operators
—
A Volteira
integral operator
—
The trace of the powers of an operator
xi¡
CONTENTS
30.6
The
Poisson
summation formula,
348
Convolution on Sl and the convergence of Fourier series
—
The
Selberg trace formula
30.7
How to express the index of an operator as a difference of
traces,
349
30.8
The Hilbert-Schmidt class,
352
Relation of Hilbert-Schmidt class and trace class
30.9
Determinant and trace for operator in Banach spaces,
353
31.
Spectral Theory of Symmetric, Normal, and Unitary Operators
354
31.1
The spectrum of symmetric operators,
356
Reality of spectrum
—
Upper and lower bounds for the
spectrum
—
Spectral radius
31.2
Functional calculus for symmetric operators,
358
The square root of a positive operator
—
Polar decomposition of
bounded operators
31.3
Spectral resolution of symmetric operators,
361
Projection-valued measures
31.4
Absolutely continuous, singular, and point spectra,
364
31.5
The spectral representation of symmetric operators,
364
Spectral multiplicity
—
Unitary equivalence
31.6
Spectral resolution of normal operators,
370
Functional calculus
—
Commutative B* -algebras
31.7
Spectral resolution of unitary operators,
372
Historical note,
375
32.
Spectral Theory of Self-Adjoint Operators
377
The Hellinger-Toeplitz theorem
—
Definition of
self-adjointness
—
Domain
32.1
Spectral resolution,
378
Sharpening of Herglotz's theorem
—
Cauchy transform of
measures
—
The spectrum of a self-adjoint operator
—
Representation of the resolvent as a Cauchy transform
—
Projection-valued measures
32.2
Spectral resolution using the Cayley transform,
389
32.3
A functional calculus for self-adjoint operators,
390
CONTENTS xiii
33.
Examples of Self-Adjoint Operators
394
33.1
The extension of unbounded symmetric operators,
394
Closure of a symmetric operator
33.2
Examples of the extension of symmetric operators; deficiency
indices,
397
The operator i(d/dx) on
C¿(M),
С(',(К+),
and
C¿(0,
1)—
Deficiency indices and
von
Neumann's theorem
—
Symmetric
operators in a real Hubert space
33.3
The
Friedrichs
extension,
402
Semibounded symmetric operators
—
Symmetric ODE
—
Symmetric elliptic PDE
33.4
The Rellich perturbation theorem,
406
Self-adjointness of
Schrödinger
operators with singular
potentials
33.5
The moment problem,
410
The Hamburger and
Stieltjes
moment problems
—
Uniqueness, or
not, of the moment problem
Historical note,
414
34.
Semigroups of Operators
416
34.1
Strongly continuous one-parameter semigroups,
418
Infinitesimal generator
—
Resolvent
—
Laplace transform
34.2
The generation of semigroups,
424
The Hille-Yosida theorem
34.3
The approximation of semigroups,
427
The Lax equivalence theorem
—
Trotter's product formula
—
Strang's product formula
34.4
Perturbation of semigroups,
432
Lumer-Phillip's theorem
—
Trotter's perturbation theorem
34.5
The spectral theory of semigroups,
434
Phillip's spectral mapping theorem
—
Adjoint semigroups
—
Semigroups of eventually compact operators
35.
Groups of Unitary Operators
440
35.1
Stone's theorem,
440
Generation of unitary groups
—
Positive definiteness and
Bochner's theorem
35.2
Ergodic theory,
443
von
Neumann's mean ergodic theorem
xiv CONTENTS
35.3
The Koopman
group,
445
Volume-preserving flows
—
Metric transitivity
—
Time
average
—
Space average
35.4
The wave equation,
447
In full space-time
—
In the exterior of an obstacle
35.5
Translation representation,
448
Sinai's theorem
—
Incoming subspaces
—
Solution of wave
equation in odd number of space dimensions
—
Wave propagation
outside an obstacle
35.6
The
Heisenberg
commutation relation,
455
The uncertainty principle
—
Weyl's form of the commutation
relation
—von Neumman's
theorem on pairs of operators that
satisfy the commutation relation
Historical note,
459
36.
Examples of Strongly Continuous Semigroups
461
36.1
Semigroups defined by parabolic equations,
461
36.2
Semigroups defined by elliptic equations,
462
36.3
Exponential decay of semigroups,
465
36.4
The Lax-Phillips semigroup,
470
36.5
The wave equation in the exterior of an obstacle,
472
37.
Scattering Theory
477
37.1
Perturbation theory,
477
37.2
The wave operators,
480
37.3
Existence of the wave operators,
482
37.4
The
invariance
of wave operators,
490
37.5
Potential scattering,
490
37.6
The scattering operator,
491
Historical note,
492
37.7
The Lax-Phillips scattering theory,
493
37.8
The zeros of the scattering matrix,
499
37.9
The automorphic wave equation,
500
Faddeev and Pavlor's theory
—
The Riemann hypothesis
38.
A Theorem of Beurling
513
38.1
The Hardy space,
513
38.2
Beurling's theorem,
515
Inner and outer factors
—
Factorization in the algebra of bounded
analytic functions
CONTENTS xv
38.3
The Titchmarsh convolution theorem,
523
Historical note,
525
Texts
527
A. Riesz-Kakutani representation theorem
529
A.
1
Positive linear functionals,
529
A.2 Volume,
532
A.3
L
as a space of functions,
535
A.4 Measurable sets and measure,
538
A.
5
The Lebesgue measure and integral,
541
B. Theory of distributions
543
B.I Definitions and examples,
543
B.2 Operations on distributions,
544
B.3 Local properties of distributions,
547
B.4 Applications to partial differential equations,
554
B.5 The Fourier transform,
558
B.6 Applications of the Fourier transform,
568
B.7 Fourier series,
569
C. Zorn's Lemma
571
Author Index
573
Subject Index
577 |
any_adam_object | 1 |
author | Lax, Peter D. 1926- |
author_GND | (DE-588)130442437 |
author_facet | Lax, Peter D. 1926- |
author_role | aut |
author_sort | Lax, Peter D. 1926- |
author_variant | p d l pd pdl |
building | Verbundindex |
bvnumber | BV014477237 |
callnumber-first | Q - Science |
callnumber-label | QA320 |
callnumber-raw | QA320 |
callnumber-search | QA320 |
callnumber-sort | QA 3320 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 |
classification_tum | MAT 460f |
ctrlnum | (OCoLC)47767143 (DE-599)BVBBV014477237 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV014477237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241108</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020603s2002 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2001046547</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471556041</subfield><subfield code="9">0-471-55604-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471556046</subfield><subfield code="9">978-0-471-55604-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47767143</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014477237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-945</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA320</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lax, Peter D.</subfield><subfield code="d">1926-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130442437</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional analysis</subfield><subfield code="c">Peter D. Lax</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 580 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/wiley021/2001046547.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009878719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009878719</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV014477237 |
illustrated | Not Illustrated |
indexdate | 2024-11-08T11:01:22Z |
institution | BVB |
isbn | 0471556041 9780471556046 |
language | English |
lccn | 2001046547 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009878719 |
oclc_num | 47767143 |
open_access_boolean | |
owner | DE-824 DE-703 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-20 DE-91G DE-BY-TUM DE-634 DE-11 DE-188 DE-83 DE-945 |
owner_facet | DE-824 DE-703 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-20 DE-91G DE-BY-TUM DE-634 DE-11 DE-188 DE-83 DE-945 |
physical | XIX, 580 Seiten |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Wiley-Interscience |
record_format | marc |
series2 | Pure and applied mathematics |
spelling | Lax, Peter D. 1926- Verfasser (DE-588)130442437 aut Functional analysis Peter D. Lax New York Wiley-Interscience 2002 XIX, 580 Seiten txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics Hier auch später erschienene, unveränderte Nachdrucke Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Funktionalanalysis (DE-588)4018916-8 s DE-604 http://www.loc.gov/catdir/toc/wiley021/2001046547.html Table of contents Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009878719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lax, Peter D. 1926- Functional analysis Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4018916-8 (DE-588)4123623-3 |
title | Functional analysis |
title_auth | Functional analysis |
title_exact_search | Functional analysis |
title_full | Functional analysis Peter D. Lax |
title_fullStr | Functional analysis Peter D. Lax |
title_full_unstemmed | Functional analysis Peter D. Lax |
title_short | Functional analysis |
title_sort | functional analysis |
topic | Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Funktionalanalysis Lehrbuch |
url | http://www.loc.gov/catdir/toc/wiley021/2001046547.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009878719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT laxpeterd functionalanalysis |