Self-regularity: a new paradigm for primal-dual interior-point algorithms
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton [u.a.]
Princeton Univ. Press
2002
|
Schriftenreihe: | Princeton series in applied mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 185 S. |
ISBN: | 0691091927 0691091935 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014308616 | ||
003 | DE-604 | ||
005 | 20040903 | ||
007 | t | ||
008 | 020523s2002 |||| 00||| eng d | ||
020 | |a 0691091927 |9 0-691-09192-7 | ||
020 | |a 0691091935 |9 0-691-09193-5 | ||
035 | |a (OCoLC)48834963 | ||
035 | |a (DE-599)BVBBV014308616 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-703 |a DE-91G |a DE-20 |a DE-824 | ||
050 | 0 | |a QA402.5 | |
082 | 0 | |a 519.6 |2 22 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a MAT 910f |2 stub | ||
100 | 1 | |a Peng, Jiming |e Verfasser |4 aut | |
245 | 1 | 0 | |a Self-regularity |b a new paradigm for primal-dual interior-point algorithms |c Jiming Peng, Cornelis Roos and Tamás Terlaky |
264 | 1 | |a Princeton [u.a.] |b Princeton Univ. Press |c 2002 | |
300 | |a XIII, 185 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Princeton series in applied mathematics | |
650 | 7 | |a Algoritmen |2 gtt | |
650 | 7 | |a Controleleer |2 gtt | |
650 | 7 | |a Mathematische programmering |2 gtt | |
650 | 7 | |a Zelfregulering |2 gtt | |
650 | 4 | |a Interior-point methods | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Programming (Mathematics) | |
650 | 0 | 7 | |a Semidefinite Optimierung |0 (DE-588)4663806-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Optimierung |0 (DE-588)4035816-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Innerer Punkt |0 (DE-588)4336760-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Innerer Punkt |0 (DE-588)4336760-4 |D s |
689 | 0 | 2 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lineare Optimierung |0 (DE-588)4035816-1 |D s |
689 | 1 | 1 | |a Semidefinite Optimierung |0 (DE-588)4663806-4 |D s |
689 | 1 | 2 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |D s |
689 | 1 | 3 | |a Innerer Punkt |0 (DE-588)4336760-4 |D s |
689 | 1 | 4 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Roos, Cornelis |e Verfasser |4 aut | |
700 | 1 | |a Terlaky, Tamás |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009815758&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009815758 |
Datensatz im Suchindex
_version_ | 1804129205511782400 |
---|---|
adam_text | Contents
Preface vii
Acknowledgements ix
Notation xi
List of Abbreviations xv
Chapter 1. Introduction and Preliminaries 1
1.1 Historical Background of Interior-Point Methods 2
1.1.1 Prelude 2
1.1.2 A Brief Review of Modern Interior-Point Methods 3
1.2 Primal-Dual Path-Following Algorithm for LO 5
1.2.1 Primal-Dual Model for LO, Duality Theory and the Central Path 5
1.2.2 Primal-Dual Newton Method for LO 8
1.2.3 Strategies in Path-following Algorithms and Motivation 12
1.3 Preliminaries and Scope of the Monograph 16
1.3.1 Preliminary Technical Results 16
1.3.2 Relation Between Proximities and Search Directions 20
1.3.3 Contents and Notational Abbreviations 22
Chapter 2. Self-Regular Functions and Their Properties 27
2.1 An Introduction to Univariate Self-Regular Functions 28
2.2 Basic Properties of Univariate Self-Regular Functions 35
2.3 Relations Between S-R and S-C Functions 42
Chapter 3, Primal-Dual Algorithms for Linear Optimization Based on Self-Regular
Proximities 47
3.1 Self-Regular Functions in 911., and Self-Regular Proximities for LO 48
3.2 The Algorithm 52
3.3 Estimate of the Proximity After a Newton Step 55
3.4 Complexity of the Algorithm 61
3.5 Relaxing the Requirement on the Proximity Function 63
Chapter 4. Interior-Point Methods for Complementarity Problems Based on Self-
Regular Proximities 67
4.1 Introduction to CPs and the Central Path 68
4.2 Preliminary Results on P«(k) Mappings 72
vj CONTENTS
4.3 New Search Directions for P,(k) CPs 80
4.4 Complexity of the Algorithm 83
4.4.1 Ingredients for Estimating the Proximity 83
4.4.2 Estimate of the Proximity After a Step 87
4.4.3 Complexity of the Algorithm for CPs 96
Chapter 5. Primal-Dual Interior-Point Methods for Semidefinite Optimization Based on
Self-Regular Proximities 99
5.1 Introduction to SDO, Duality Theory and Central Path 100
5.2 Preliminary Results on Matrix Functions 103
5.3 New Search Directions for SDO 111
5.3.1 Scaling Schemes for SDO 111
5.3.2 Intermezzo: A Variational Principle for Scaling 112
5.3.3 New Proximities and Search Directions for SDO 114
5.4 New Polynomial Primal-Dual IPMs for SDO 117
5.4.1 The Algorithm 117
5.4.2 Complexity of the Algorithm 118
Chapter 6. Primal-Dual Interior-Point Methods for Second-Order Conic Optimization
Based on Self-Regular Proximities 125
6.1 Introduction to SOCO, Duality Theory and The Central Path 126
6.2 Preliminary Results on Functions Associated with Second-Order Cones 129
6.2.1 Jordan Algebra, Trace and Determinant 130
6.2.2 Functions and Derivatives Associated with Second-Order Cones 132
6.3 New Search Directions for SOCO 142
6.3.1 Preliminaries 142
6.3.2 Scaling Schemes for SOCO 143
6.3.3 Intermezzo: A Variational Principle for Scaling 145
6.3.4 New Proximities and Search Directions for SOCO 147
6.4 New IPMs for SOCO 150
6.4.1 The Algorithm 150
6.4.2 Complexity of the Algorithm 152
Chapter 7. Initialization: Embedding Models for Linear Optimization, Complementarity
Problems, Semidefinite Optimization and Second-Order Conic
Optimization 159
7.1 The Self-Dual Embedding Model for LO 160
7.2 The Embedding Model for CP 162
7.3 Self-Dual Embedding Models for SDO and SOCO 165
Chapter 8. Conclusions 169
8.1 A Survey of the Results and Future Research Topics 170
References 175
Index 183
|
any_adam_object | 1 |
author | Peng, Jiming Roos, Cornelis Terlaky, Tamás |
author_facet | Peng, Jiming Roos, Cornelis Terlaky, Tamás |
author_role | aut aut aut |
author_sort | Peng, Jiming |
author_variant | j p jp c r cr t t tt |
building | Verbundindex |
bvnumber | BV014308616 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.5 |
callnumber-search | QA402.5 |
callnumber-sort | QA 3402.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 870 |
classification_tum | MAT 910f |
ctrlnum | (OCoLC)48834963 (DE-599)BVBBV014308616 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02524nam a2200637 c 4500</leader><controlfield tag="001">BV014308616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040903 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020523s2002 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691091927</subfield><subfield code="9">0-691-09192-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691091935</subfield><subfield code="9">0-691-09193-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)48834963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014308616</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peng, Jiming</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-regularity</subfield><subfield code="b">a new paradigm for primal-dual interior-point algorithms</subfield><subfield code="c">Jiming Peng, Cornelis Roos and Tamás Terlaky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 185 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algoritmen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Controleleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische programmering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zelfregulering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interior-point methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semidefinite Optimierung</subfield><subfield code="0">(DE-588)4663806-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innerer Punkt</subfield><subfield code="0">(DE-588)4336760-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Innerer Punkt</subfield><subfield code="0">(DE-588)4336760-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Optimierung</subfield><subfield code="0">(DE-588)4035816-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Semidefinite Optimierung</subfield><subfield code="0">(DE-588)4663806-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Innerer Punkt</subfield><subfield code="0">(DE-588)4336760-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roos, Cornelis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terlaky, Tamás</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009815758&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009815758</subfield></datafield></record></collection> |
id | DE-604.BV014308616 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T19:01:26Z |
institution | BVB |
isbn | 0691091927 0691091935 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009815758 |
oclc_num | 48834963 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-91G DE-BY-TUM DE-20 DE-824 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-91G DE-BY-TUM DE-20 DE-824 |
physical | XIII, 185 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Princeton Univ. Press |
record_format | marc |
series2 | Princeton series in applied mathematics |
spelling | Peng, Jiming Verfasser aut Self-regularity a new paradigm for primal-dual interior-point algorithms Jiming Peng, Cornelis Roos and Tamás Terlaky Princeton [u.a.] Princeton Univ. Press 2002 XIII, 185 S. txt rdacontent n rdamedia nc rdacarrier Princeton series in applied mathematics Algoritmen gtt Controleleer gtt Mathematische programmering gtt Zelfregulering gtt Interior-point methods Mathematical optimization Programming (Mathematics) Semidefinite Optimierung (DE-588)4663806-4 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Lineare Optimierung (DE-588)4035816-1 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 gnd rswk-swf Innerer Punkt (DE-588)4336760-4 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Optimierung (DE-588)4043664-0 s Innerer Punkt (DE-588)4336760-4 s Algorithmus (DE-588)4001183-5 s DE-604 Lineare Optimierung (DE-588)4035816-1 s Semidefinite Optimierung (DE-588)4663806-4 s Konvexe Optimierung (DE-588)4137027-2 s Roos, Cornelis Verfasser aut Terlaky, Tamás Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009815758&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Peng, Jiming Roos, Cornelis Terlaky, Tamás Self-regularity a new paradigm for primal-dual interior-point algorithms Algoritmen gtt Controleleer gtt Mathematische programmering gtt Zelfregulering gtt Interior-point methods Mathematical optimization Programming (Mathematics) Semidefinite Optimierung (DE-588)4663806-4 gnd Optimierung (DE-588)4043664-0 gnd Lineare Optimierung (DE-588)4035816-1 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Innerer Punkt (DE-588)4336760-4 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4663806-4 (DE-588)4043664-0 (DE-588)4035816-1 (DE-588)4137027-2 (DE-588)4336760-4 (DE-588)4001183-5 |
title | Self-regularity a new paradigm for primal-dual interior-point algorithms |
title_auth | Self-regularity a new paradigm for primal-dual interior-point algorithms |
title_exact_search | Self-regularity a new paradigm for primal-dual interior-point algorithms |
title_full | Self-regularity a new paradigm for primal-dual interior-point algorithms Jiming Peng, Cornelis Roos and Tamás Terlaky |
title_fullStr | Self-regularity a new paradigm for primal-dual interior-point algorithms Jiming Peng, Cornelis Roos and Tamás Terlaky |
title_full_unstemmed | Self-regularity a new paradigm for primal-dual interior-point algorithms Jiming Peng, Cornelis Roos and Tamás Terlaky |
title_short | Self-regularity |
title_sort | self regularity a new paradigm for primal dual interior point algorithms |
title_sub | a new paradigm for primal-dual interior-point algorithms |
topic | Algoritmen gtt Controleleer gtt Mathematische programmering gtt Zelfregulering gtt Interior-point methods Mathematical optimization Programming (Mathematics) Semidefinite Optimierung (DE-588)4663806-4 gnd Optimierung (DE-588)4043664-0 gnd Lineare Optimierung (DE-588)4035816-1 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Innerer Punkt (DE-588)4336760-4 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Algoritmen Controleleer Mathematische programmering Zelfregulering Interior-point methods Mathematical optimization Programming (Mathematics) Semidefinite Optimierung Optimierung Lineare Optimierung Konvexe Optimierung Innerer Punkt Algorithmus |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009815758&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pengjiming selfregularityanewparadigmforprimaldualinteriorpointalgorithms AT rooscornelis selfregularityanewparadigmforprimaldualinteriorpointalgorithms AT terlakytamas selfregularityanewparadigmforprimaldualinteriorpointalgorithms |