Infinite homotopy theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer
2001
|
Schriftenreihe: | K-monographs in mathematics
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 296 S. zahlr. Ill. |
ISBN: | 0792369823 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV014262216 | ||
003 | DE-604 | ||
005 | 20030725 | ||
007 | t | ||
008 | 020423s2001 a||| |||| 00||| eng d | ||
020 | |a 0792369823 |9 0-7923-6982-3 | ||
035 | |a (OCoLC)46808838 | ||
035 | |a (DE-599)BVBBV014262216 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-739 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA612.7 | |
082 | 0 | |a 514/.24 |2 21 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Baues, Hans J. |d 1943- |e Verfasser |0 (DE-588)128430702 |4 aut | |
245 | 1 | 0 | |a Infinite homotopy theory |c by Hans-Joachim Baues and Antonio Quintero |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer |c 2001 | |
300 | |a VII, 296 S. |b zahlr. Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a K-monographs in mathematics |v 6 | |
650 | 4 | |a Homotopie | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Quintero, Antonio |e Verfasser |4 aut | |
830 | 0 | |a K-monographs in mathematics |v 6 |w (DE-604)BV011222840 |9 6 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009781233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009781233 |
Datensatz im Suchindex
_version_ | 1804129153647116288 |
---|---|
adam_text | TABLE OF CONTENTS
Introduction 1
Chapter I. Foundations of homotopy theory and proper
homotopy theory 7
§ 1 Compactifications and compact maps 8
§ 2 Homotopy 18
§ 3 Categories with a cylinder functor 22
§ 4 Cofibration categories and homotopy theory in / categories 29
§ 5 Tracks and cylindrical homotopy groups 36
§ 6 Homotopy groups 44
§7Cofibres 50
Appendices 53
§ 8 Appendix. Compact maps 53
§ 9 Appendix. The Freudenthal compactification 57
Chapter II. Trees and spherical objects in the category
Topp of compact maps 71
§ 1 Locally finite trees and Freudenthal ends 71
Appendix. Halin s tree lemma 78
§ 2 Unions in Topp 80
Appendix. The proper Hilton Milnor theorem 87
§ 3 Spherical objects and homotopy groups in Topp 89
§4 The homotopy category of n dimensional spherical objects in
Topp 96
Appendix. Classification of spherical objects under a tree 103
Chapter III. Tree like spaces and spherical objects in the
category End of ended spaces 107
§ 1 Tree like spaces in End 107
§ 2 Unions in End 109
§3 Spherical objects and homotopy groups in End 113
§ 4 The homotopy category of n dimensional spherical objects in
End 117
Appendix. Classification of spherical objects under a tree like
space 122
§ 5 Z sets and telescopes 124
§ 6 ARZ spaces 130
Chapter IV. CW complexes 135
vi TABLE OF CONTENTS
§ 1 Relative CW complexes in Top 135
§ 2 Strongly locally finite CW complexes 140
§ 3 Relative CW complexes in Topp 142
§ 4 Relative CW complexes in End 148
§ 5 Normalization of CW complexes 154
§ 6 Push outs of CW complexes 157
§ 7 The Blakers Massey theorem 159
§ 8 The proper Whitehead theorem 163
Chapter V. Theories and models of theories 165
§ 1 Theories of cogroups and Van Kampen theorem for proper fun¬
damental groups 165
§ 2 Additive categories and additivization 175
§3 Rings associated to tree like spaces 185
§ 4 Inverse limits of gr(T) models 192
§5 Kernels in ab(T) 199
Chapter VI. T controlled homology 203
§ 1 R modules and the reduced projective class group 203
§ 2 Chain complexes in ringoids and homology 208
§ 3 Cellular T controlled homology 211
§ 4 Coefficients for T controlled homology and cohomology 215
§ 5 The Hurewicz theorem in End 221
§ 6 The proper homological Whitehead theorem (the 1 connected
case) 224
§ 7 Proper finiteness obstructions (the 1 connected case) 225
Chapter VII. Proper groupoids 229
§ 1 Filtered discrete objects 229
§ 2 The fundamental groupoid of ended spaces 232
§ 3 The proper homotopy category of 1 dimensional reduced relative
CW complexes 236
§ 4 Free X groupoids under G 237
§ 5 The proper fundamental groupoid of a 1 dimensional reduced
relative CW complex 242
§ 6 Simplicial objects in proper homotopy theory 244
Chapter VIII. The enveloping ringoid of a proper grou¬
poid 249
§ 1 The homotopy category of 1 dimensional spherical objects under
T 249
§ 2 The ringoid S(X, T) associated to a pair (X, T) in End 250
§ 3 The enveloping ringoid of the proper fundamental group 253
§ 4 The enveloping ringoid of the proper fundamental groupoid 256
Chapter IX. T controlled homology with coefficients 261
§ 1 The T controlled twisted chain complex of a relative CW complex
(X,T) 261
§ 2 The T controlled twisted chain complex of a CW complex X 266
INFINITE HOMOTOPY THEORY vii
§ 3 T controlled cohomology and homology with local coefficients 268
§ 4 Proper obstruction theory 269
§ 5 The twisted Hurewicz homomorphism and the twisted F sequence
in ooEnd 270
§ 6 The proper homological Whitehead theorem (the 0 connected
case) 273
§ 7 Proper finiteness obstructions (the 0 connected case) 274
Chapter X. Simple homotopy types with ends 275
§ 1 The torsion group Kx 275
§ 2 Simple equivalences and proper equivalences 277
§ 3 The topological Whitehead group 279
§ 4 The algebraic Whitehead group 280
§ 5 The proper algebraic Whitehead group 282
Bibliography 285
Subject Index 291
List of symbols 295
|
any_adam_object | 1 |
author | Baues, Hans J. 1943- Quintero, Antonio |
author_GND | (DE-588)128430702 |
author_facet | Baues, Hans J. 1943- Quintero, Antonio |
author_role | aut aut |
author_sort | Baues, Hans J. 1943- |
author_variant | h j b hj hjb a q aq |
building | Verbundindex |
bvnumber | BV014262216 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.7 |
callnumber-search | QA612.7 |
callnumber-sort | QA 3612.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 300 |
ctrlnum | (OCoLC)46808838 (DE-599)BVBBV014262216 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01482nam a2200397 cb4500</leader><controlfield tag="001">BV014262216</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030725 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020423s2001 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792369823</subfield><subfield code="9">0-7923-6982-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46808838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014262216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baues, Hans J.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128430702</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite homotopy theory</subfield><subfield code="c">by Hans-Joachim Baues and Antonio Quintero</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 296 S.</subfield><subfield code="b">zahlr. Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">K-monographs in mathematics</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quintero, Antonio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">K-monographs in mathematics</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV011222840</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009781233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009781233</subfield></datafield></record></collection> |
id | DE-604.BV014262216 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:00:37Z |
institution | BVB |
isbn | 0792369823 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009781233 |
oclc_num | 46808838 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-739 DE-703 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-739 DE-703 DE-188 |
physical | VII, 296 S. zahlr. Ill. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Kluwer |
record_format | marc |
series | K-monographs in mathematics |
series2 | K-monographs in mathematics |
spelling | Baues, Hans J. 1943- Verfasser (DE-588)128430702 aut Infinite homotopy theory by Hans-Joachim Baues and Antonio Quintero Dordrecht [u.a.] Kluwer 2001 VII, 296 S. zahlr. Ill. txt rdacontent n rdamedia nc rdacarrier K-monographs in mathematics 6 Homotopie Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s DE-604 Quintero, Antonio Verfasser aut K-monographs in mathematics 6 (DE-604)BV011222840 6 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009781233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Baues, Hans J. 1943- Quintero, Antonio Infinite homotopy theory K-monographs in mathematics Homotopie Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4128142-1 |
title | Infinite homotopy theory |
title_auth | Infinite homotopy theory |
title_exact_search | Infinite homotopy theory |
title_full | Infinite homotopy theory by Hans-Joachim Baues and Antonio Quintero |
title_fullStr | Infinite homotopy theory by Hans-Joachim Baues and Antonio Quintero |
title_full_unstemmed | Infinite homotopy theory by Hans-Joachim Baues and Antonio Quintero |
title_short | Infinite homotopy theory |
title_sort | infinite homotopy theory |
topic | Homotopie Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopie Homotopy theory Homotopietheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009781233&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011222840 |
work_keys_str_mv | AT baueshansj infinitehomotopytheory AT quinteroantonio infinitehomotopytheory |