Association rule mining: models and algorithms
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London
Springer
2002
|
Schriftenreihe: | Lecture notes in computer science
2307 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 238 S. |
ISBN: | 3540435336 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV014221470 | ||
003 | DE-604 | ||
005 | 20031126 | ||
007 | t| | ||
008 | 020326s2002 gw |||| 00||| eng d | ||
016 | 7 | |a 963999613 |2 DE-101 | |
020 | |a 3540435336 |9 3-540-43533-6 | ||
035 | |a (OCoLC)50192406 | ||
035 | |a (DE-599)BVBBV014221470 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-91G |a DE-739 |a DE-824 |a DE-706 |a DE-83 |a DE-11 |a DE-1049 | ||
050 | 0 | |a QA76.9.D343 | |
082 | 0 | |a 006.3 |2 21 | |
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Zhang, Chengqi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Association rule mining |b models and algorithms |c Chengqi Zhang ; Shichao Zhang |
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London |b Springer |c 2002 | |
300 | |a XII, 238 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in computer science |v 2307 | |
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Data mining | |
650 | 4 | |a Rule-based programming | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produktionsregelsystem |0 (DE-588)4258171-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Produktionsregelsystem |0 (DE-588)4258171-0 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 1 | 1 | |a Produktionsregelsystem |0 (DE-588)4258171-0 |D s |
689 | 1 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Zhang, Shichao |e Verfasser |0 (DE-588)123637260 |4 aut | |
830 | 0 | |a Lecture notes in computer science |v 2307 |w (DE-604)BV000000607 |9 2307 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009751333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009751333 |
Datensatz im Suchindex
_version_ | 1820874910634868736 |
---|---|
adam_text |
CONTENTS
1.
INTRODUCTION
.
1
1
.1
WHA
TI
SDA
TAMINING
?
.
1
1
.2
WHYDOWENE
E
DDA
TAMINING
?
.
2
1
.3
K
NOW
LE
DG
EDIS
C
OVE
R
YINDA
TA
BA
S
E
S(K
DD).
4
1
.3
.1
PR
O
C
E
S
S
INGSTE
PSO
FK
DD.
4
1
.3
.2
FE
A
TUR
ESE
LE
C
TIO
N.
6
1.3.3
APPLICATIONS
OF
KNOWLEDGE
DISCOVERY
IN
DATABASES.
.
.
.
7
1
.4
DA
TAMININGTA
S
K
.
7
1
.5
DA
TAMININGTE
CHNIQ
UE
S.
9
1
.5
.1
C
LUS
TE
R
ING.
9
1
.5
.2
C
LA
S
S
IFIC
A
TIO
N
.
1
0
1.5.3
CONCEPTUAL
CLUSTERING
AND
CLASSIFICATION
.
.
.
.
.
.
.
.
.
.
.
.
14
1
.5
.4
DE
P
E
NDE
NC
YMO
DE
LING
.
1
5
1
.5
.5
SUMMA
R
IZ
A
TIO
N.
1
5
1
.5
.6
RE
G
R
E
S
S
IO
N.
1
6
1
.5
.7
C
A
S
E
-
B
A
S
E
DL
E
A
R
NING.
1
6
1
.5
.8
MININGT
IME
-
SE
R
IE
SDA
TA.
1
7
1
.6
DA
TAMININGA
NDMA
R
KE
TING
.
1
7
1.7
SOLVING
REAL-WORLD
PROBLEMS
BY
DATA
MINING
.
.
.
.
.
.
.
.
.
.
.
.
.
.
18
1
.8
SUMMA
R
Y.
2
1
1
.8
.1
TR
E
NDSO
FDA
TAMINING.
2
1
1
.8
.2
O
UTLINE
.
2
2
2.
ASSOCIATION
RULE
.
25
2
.1
B
A
S
ICC
O
NC
E
PTS.
2
5
2
.2
ME
A
S
UR
E
ME
NTO
FAS
S
O
C
IA
TIO
NRULE
S.
3
0
2.2.1
SUPPORT-CONFIDENCE
FRAMEWORK
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
30
2
.2
.2
T
HR
E
EE
S
TA
BLIS
HE
DME
A
S
UR
E
ME
NTS.
3
1
2
.3
SE
A
R
CHINGFR
E
Q
UE
NTI
TE
MS
E
TS
.
3
3
2
.3
.1
T
HEAPR
IO
R
IALG
O
R
ITHM.
3
3
2
.3
.2
I
DE
NTIFY
INGI
TE
MS
E
TSO
FI
NTE
R
E
S
T.
3
6
2
.4
RE
S
E
A
R
CHINTOMININGAS
S
O
C
IA
TIO
NRULE
S
.
3
9
2
.4
.1
C
HI-
S
Q
UA
R
E
DTE
S
TME
THO
D.
4
0
2
.4
.2
T
HEFP-
TR
E
EB
A
S
E
DMO
DE
L
.
4
3
XC
O
N
T
E
N
T
S
2
.4
.3
O
PUSB
A
S
E
DALG
O
R
ITHM.
4
4
2
.5
SUMMA
R
Y.
4
6
3.
NEGATIVE
ASSOCIATION
RULE
.
47
3
.1
I
NTR
O
DUC
TIO
N
.
4
7
3
.2
FO
C
US
INGO
NI
TE
MS
E
TSO
FI
NTE
R
E
S
T.
5
1
3.3
EFFECTIVENESS
OF
FOCUSING
ON
INFREQUENT
ITEMSETS
OF
INTEREST
.
.
53
3
.4
I
TE
MS
E
TSO
FI
NTE
R
E
S
T
.
5
5
3
.4
.1
PO
S
ITIVEI
TE
MS
E
TSO
FI
NTE
R
E
S
T
.
5
5
3
.4
.2
NE
G
A
TIVEI
TE
MS
E
TSO
FI
NTE
R
E
S
T.
5
8
3
.5
SE
A
R
CHINGI
NTE
R
E
S
TINGI
TE
MS
E
TS.
5
9
3
.5
.1
PR
O
C
E
DUR
E.
5
9
3
.5
.2
ANE
X
A
MPLE.
6
2
3
.5
.3
AT
W
IC
E
-
PR
UNINGAPPR
O
A
CH.
6
5
3
.6
NE
G
A
TIVEAS
S
O
C
IA
TIO
NRULE
SO
FI
NTE
R
E
S
T.
6
6
3
.6
.1
ME
A
S
UR
E
ME
NT
.
6
6
3
.6
.2
E
X
A
MPLE
S
.
7
1
3
.7
ALG
O
R
ITHMSDE
S
IG
N.
7
3
3
.8
I
DE
NTIFY
INGRE
LIA
BLEE
X
C
E
PTIO
NS.
7
5
3.8.1
CONFIDENCE
BASED
INTERESTINGNESS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
75
3.8.2
SUPPORT
BASED
INTERESTINGNESS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
77
3
.8
.3
SE
A
R
CHINGRE
LIA
BLEE
X
C
E
PTIO
NS.
7
8
3
.9
C
O
MPA
R
IS
O
NS.
8
0
3.9.1
COMPARISON
WITH
SUPPORT-CONFIDENCE
FRAMEWORK
.
.
.
.
.
80
3
.9
.2
C
O
MPA
R
IS
O
NW
ITHI
NTE
R
E
S
TMO
DE
LS.
8
0
3
.9
.3
C
O
MPA
R
IS
O
NW
ITHE
X
C
E
PTIO
NMININGMO
DE
L.
8
1
3.9.4
COMPARISON
WITH
STRONG
NEGATIVE
ASSOCIATION
MODEL
.
82
3
.1
0
SUMMA
R
Y.
8
3
4.
CAUSALITY
IN
DATABASES
.
85
4
.1
I
NTR
O
DUC
TIO
N
.
8
5
4
.2
B
A
S
ICDE
FINITIO
NS
.
8
7
4
.3
DA
TAPA
R
TITIO
NING
.
9
0
4.3.1
PARTITIONING
DOMAINS
OF
ATTRIBUTES
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
90
4
.3
.2
Q
UA
NTITA
TIVEI
TE
MS
.
9
2
4.3.3
DECOMPOSITION
AND
COMPOSITION
OF
QUANTITATIVE
ITEMS
93
4
.3
.4
I
TE
MVA
R
IA
BLE
S
.
9
5
4.3.5
DECOMPOSITION
AND
COMPOSITION
FOR
ITEM
VARIABLES
.
.
.
96
4
.3
.6
PR
O
C
E
DUR
EO
FPA
R
TITIO
NING.
9
8
4
.4
DE
P
E
NDE
NC
YA
MO
NGVA
R
IA
BLE
S
.
9
9
4.4.1
CONDITIONAL
PROBABILITIES
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
100
4
.4
.2
C
A
US
A
LRULE
SO
FI
NTE
R
E
S
T.
1
0
1
4
.4
.3
ALG
O
R
ITHMDE
S
IG
N
.
1
0
3
4.5
CAUSALITY
IN
PROBABILISTIC
DATABASES
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
105
4
.5
.1
PR
O
BLE
MSTA
TE
ME
NT.
1
0
5
CONTENTS
XI
4
.5
.2
RE
Q
UIR
E
DC
O
NC
E
PTS
.
1
0
8
4
.5
.3
PR
E
PR
O
C
E
S
SO
FDA
TA
.
1
0
8
4.5.4
PROBABILISTIC
DEPENDENCY.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
110
4
.5
.5
I
MPR
OVE
ME
NTS.
1
1
5
4
.6
SUMMA
R
Y.
1
1
9
5.
CAUSAL
RULE
ANALYSIS
.
121
5
.1
I
NTR
O
DUC
TIO
N
.
1
2
1
5
.2
PR
O
BLE
MSTA
TE
ME
NT
.
1
2
2
5
.2
.1
RE
LA
TE
DC
O
NC
E
PTS.
1
2
4
5
.3
O
PTIMIZ
INGC
A
US
A
LRULE
S
.
1
2
6
5
.3
.1
UNNE
C
E
S
S
A
R
YI
NFO
R
MA
TIO
N
.
1
2
6
5
.3
.2
ME
R
G
INGUNNE
C
E
S
S
A
R
YI
NFO
R
MA
TIO
N
.
1
2
7
5
.3
.3
ME
R
G
INGI
TE
MSW
ITHI
DE
NTIC
A
LPR
O
P
E
R
TIE
S.
1
3
0
5
.4
PO
LY
NO
MIA
LFUNC
TIO
NFO
RC
A
US
A
LITY.
1
3
1
5
.4
.1
C
A
US
A
LRE
LA
TIO
NS
HIP
.
1
3
2
5
.4
.2
B
INA
R
YL
INE
A
RC
A
US
A
LIT
Y.
1
3
2
5.4.3
N-ARY
LINEAR
PROPAGATING
MODEL
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
137
5
.4
.4
E
X
A
MPLE
S
.
1
3
9
5
.5
FUNC
TIO
NSFO
RGE
NE
R
A
LC
A
US
A
LITY
.
1
4
3
5
.6
APPR
OX
IMA
TINGC
A
US
A
LIT
YBYFITTING
.
1
4
9
5
.6
.1
PR
E
PR
O
C
E
S
S
INGO
FDA
TA.
1
4
9
5.6.2
CONSTRUCTING
THE
POLYNOMIAL
FUNCTION
.
.
.
.
.
.
.
.
.
.
.
.
.
.
150
5
.6
.3
ALG
O
R
ITHMDE
S
IG
N
.
1
5
5
5
.6
.4
E
X
A
MPLE
S
.
1
5
6
5
.7
SUMMA
R
Y.
1
5
9
6.
ASSOCIATION
RULES
IN
VERY
LARGE
DATABASES
.
161
6
.1
I
NTR
O
DUC
TIO
N
.
1
6
1
6
.2
I
NS
TA
NC
ESE
LE
C
TIO
N
.
1
6
4
6
.2
.1
E
VA
LUA
TINGTHESIZ
EO
FI
NS
TA
NC
ESE
TS
.
1
6
4
6
.2
.2
GE
NE
R
A
TINGI
NS
TA
NC
ESE
T.
1
6
7
6
.3
E
S
TIMA
TIO
NO
FAS
S
O
C
IA
TIO
NRULE
S.
1
6
9
6.3.1
IDENTIFYING
APPROXIMATE
FREQUENT
ITEMSETS
.
.
.
.
.
.
.
.
.
.
169
6.3.2
MEASURING
ASSOCIATION
RULES
OF
INTEREST
.
.
.
.
.
.
.
.
.
.
.
.
.
171
6
.3
.3
ALG
O
R
ITHMDE
S
IG
NING.
1
7
2
6.4
SEARCHING
TRUE
ASSOCIATION
RULES
BASED
ON
APPROXIMATIONS
.
173
6
.5
I
NC
R
E
ME
NTA
LMINING.
1
7
9
6
.5
.1
PR
O
MIS
INGI
TE
MS
E
TS
.
1
8
0
6
.5
.2
SE
A
R
CHINGPR
O
C
E
DUR
E.
1
8
2
6
.5
.3
C
O
MP
E
TITIVESE
TME
THO
D
.
1
8
7
6
.5
.4
AS
S
IG
NINGWE
IG
HTS.
1
8
8
6
.5
.5
ALG
O
R
ITHMO
FI
NC
R
E
ME
NTA
LMINING.
1
9
0
6
.6
I
MPR
OVE
ME
NTO
FI
NC
R
E
ME
NTA
LMINING
.
1
9
3
6
.6
.1
C
O
NDITIO
NSO
FTE
R
MINA
TIO
N.
1
9
3
XII
CONTENTS
6
.6
.2
ANY
TIMESE
A
R
CHALG
O
R
ITHM
.
1
9
4
6
.7
SUMMA
R
Y.
1
9
7
7.
ASSOCIATION
RULES
IN
SMALL
DATABASES
.
199
7
.1
I
NTR
O
DUC
TIO
N
.
2
0
0
7
.2
PR
O
BLE
MSTA
TE
ME
NT
.
2
0
1
7.2.1
PROBLEMS
FACED
BY
UTILIZING
EXTERNAL
DATA
.
.
.
.
.
.
.
.
.
.
201
7
.2
.2
O
URAPPR
O
A
CH
.
2
0
3
7
.3
E
X
TE
R
NA
LDA
TAC
O
LLE
C
TING
.
2
0
4
7
.3
.1
AVA
ILA
BLETO
O
LS
.
2
0
4
7.3.2
INDEXING
BY
A
CONDITIONAL
ASSOCIATED
SEMANTIC
.
.
.
.
.
.
206
7
.3
.3
PR
O
C
E
DUR
E
SFO
RSIMILA
R
ITY.
2
0
8
7
.4
ADA
TAPR
E
PR
O
C
E
S
S
INGFR
A
ME
WO
R
K
.
2
0
9
7.4.1
PRE-ANALYSIS:
SELECTING
RELEVANT
AND
UNCONTRADICTABLE
C
O
LLE
C
TE
DDA
TA
-
SO
UR
C
E
S.
2
0
9
7.4.2
POST-ANALYSIS:
SUMMARIZING
HISTORICAL
DATA
.
.
.
.
.
.
.
.
.
.
212
7
.4
.3
ALG
O
R
ITHMDE
S
IG
NING.
2
1
4
7
.5
SY
NTHE
S
IZ
INGSE
LE
C
TE
DRULE
S.
2
1
7
7
.5
.1
AS
S
IG
NINGWE
IG
HTS.
2
1
8
7
.5
.2
ALG
O
R
ITHMDE
S
IG
N
.
2
2
1
7
.6
RE
FININGRULE
SMINE
DINSMA
LLDA
TA
BA
S
E
S.
2
2
2
7
.7
SUMMA
R
Y.
2
2
3
8.
CONCLUSION
AND
FUTURE
WORK
.
225
8
.1
C
O
NC
LUS
IO
N
.
2
2
5
8
.2
FUTUR
EWO
R
K.
2
2
6
REFERENCES
.
229
SUBJECT
INDEX
.
237 |
any_adam_object | 1 |
author | Zhang, Chengqi Zhang, Shichao |
author_GND | (DE-588)123637260 |
author_facet | Zhang, Chengqi Zhang, Shichao |
author_role | aut aut |
author_sort | Zhang, Chengqi |
author_variant | c z cz s z sz |
building | Verbundindex |
bvnumber | BV014221470 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
classification_rvk | SS 4800 |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)50192406 (DE-599)BVBBV014221470 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV014221470</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031126</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020326s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">963999613</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540435336</subfield><subfield code="9">3-540-43533-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50192406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014221470</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1049</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Chengqi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association rule mining</subfield><subfield code="b">models and algorithms</subfield><subfield code="c">Chengqi Zhang ; Shichao Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 238 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">2307</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rule-based programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produktionsregelsystem</subfield><subfield code="0">(DE-588)4258171-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Produktionsregelsystem</subfield><subfield code="0">(DE-588)4258171-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Produktionsregelsystem</subfield><subfield code="0">(DE-588)4258171-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shichao</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123637260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in computer science</subfield><subfield code="v">2307</subfield><subfield code="w">(DE-604)BV000000607</subfield><subfield code="9">2307</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009751333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009751333</subfield></datafield></record></collection> |
id | DE-604.BV014221470 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T15:07:15Z |
institution | BVB |
isbn | 3540435336 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009751333 |
oclc_num | 50192406 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-739 DE-824 DE-706 DE-83 DE-11 DE-1049 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-739 DE-824 DE-706 DE-83 DE-11 DE-1049 |
physical | XII, 238 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series | Lecture notes in computer science |
series2 | Lecture notes in computer science |
spelling | Zhang, Chengqi Verfasser aut Association rule mining models and algorithms Chengqi Zhang ; Shichao Zhang Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London Springer 2002 XII, 238 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in computer science 2307 Computer algorithms Data mining Rule-based programming Data Mining (DE-588)4428654-5 gnd rswk-swf Wissensextraktion (DE-588)4546354-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Produktionsregelsystem (DE-588)4258171-0 gnd rswk-swf Data Mining (DE-588)4428654-5 s Produktionsregelsystem (DE-588)4258171-0 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Wissensextraktion (DE-588)4546354-2 s Zhang, Shichao Verfasser (DE-588)123637260 aut Lecture notes in computer science 2307 (DE-604)BV000000607 2307 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009751333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhang, Chengqi Zhang, Shichao Association rule mining models and algorithms Lecture notes in computer science Computer algorithms Data mining Rule-based programming Data Mining (DE-588)4428654-5 gnd Wissensextraktion (DE-588)4546354-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Produktionsregelsystem (DE-588)4258171-0 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4546354-2 (DE-588)4193754-5 (DE-588)4258171-0 |
title | Association rule mining models and algorithms |
title_auth | Association rule mining models and algorithms |
title_exact_search | Association rule mining models and algorithms |
title_full | Association rule mining models and algorithms Chengqi Zhang ; Shichao Zhang |
title_fullStr | Association rule mining models and algorithms Chengqi Zhang ; Shichao Zhang |
title_full_unstemmed | Association rule mining models and algorithms Chengqi Zhang ; Shichao Zhang |
title_short | Association rule mining |
title_sort | association rule mining models and algorithms |
title_sub | models and algorithms |
topic | Computer algorithms Data mining Rule-based programming Data Mining (DE-588)4428654-5 gnd Wissensextraktion (DE-588)4546354-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Produktionsregelsystem (DE-588)4258171-0 gnd |
topic_facet | Computer algorithms Data mining Rule-based programming Data Mining Wissensextraktion Maschinelles Lernen Produktionsregelsystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009751333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000607 |
work_keys_str_mv | AT zhangchengqi associationruleminingmodelsandalgorithms AT zhangshichao associationruleminingmodelsandalgorithms |