Introduction to calculus with analytic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
McGraw-Hill
1962
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 360 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014207831 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 020318s1962 |||| 00||| eng d | ||
035 | |a (OCoLC)3234386 | ||
035 | |a (DE-599)BVBBV014207831 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
050 | 0 | |a QA303 | |
082 | 0 | |a 515.15 |2 19 | |
100 | 1 | |a Andree, Richard V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to calculus with analytic geometry |c Richard V. Andree |
264 | 1 | |a New York [u.a.] |b McGraw-Hill |c 1962 | |
300 | |a XI, 360 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Calculus | |
650 | 4 | |a Geometry, Analytic | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009740264&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009740264 |
Datensatz im Suchindex
_version_ | 1804129090143256576 |
---|---|
adam_text | Contents
Preface v
Chapter 1. Basic Algebraic Theory 1
1 1 Introduction 1
1 2 Functions and Relations 1
1 3 More General Functions 4
1 4 The Function Notation 5
1 5 Inequalities 8
1 6 Absolute Value 8
1 7 Two Basic Properties 10
1 8 The Structure of the Number System 10
1 9 Two Unusual Real Numbers 12
1 10 The Meaning of Division 12
1 11 Solution Set of an Equation 11
1 12 Auxiliary Equations 22
1 13 A/ = /(* + Ax) f(x) 27
1 14 Self Test 30
Chapter 2. Basic Geometric Theory 31
2 1 Analytic (Coordinate) Geometry 31
2 2 The Distance between Two Points 38
2 3 Loci 43
2 4 Solution of Inequalities of First Degree 49
2 5 Slope of a Line 53
2 6 The Equation of a Line 57
2 7 Self Test 65
Chapter 3. Tangents and Limits 66
3 1 The Line Tangent to a Curve at a Point 66
3 2 Limit of a Function 69
3 3 Continuous Function 72
ix
Contents
3 4 Slope of a Tangent Line 80
3 5 Increments 86
3 6 Self Test 90
Chapter 4. Differential Calculus 91
4 1 The Derivative 91
4 2 The Delta Process 92
4 3 Generalization 97
4 4 Preliminary Theorems on Differentiation 97
4 5 The Derivative of a Polynomial 100
4 6 Maximum and Minimum Values of a Function 105
4 7 Applications Involving Maxima and Minima 118
4 8 Differentiation of a Product 123
4 9 Differentiation of a Power of a Function 126
4 10 Derivative of a Composite Function 129
4 11 Some Additional Applications 132
4 12 Self Test 136
Chapter 5. Extended Theorems of Differentiation 138
5 1 Negative, Fractional, and Zero Exponents 138
5 2 Scientific Notation 142
d(kx )
5 3 An Extension of the Theorem ^— = knx 1 147
dx
5 4 A Further Extension of the Theorem f = fcr™ 1 149
ax
5 5 Self Test 154
Chapter 6. Rates of Change 156
6 1 Kate of Change 156
6 2 Average Rate of Change I56
6 3 Velocity 158
6 4 General Rate of Change I62
6 5 Self Test 166
Chapter 7. Integral Calculus I67
7 1 S Notation 167
7 2 lim f(x) I72
7 3 Area 173
7 4 The Spring Problem 180
¦n
7 5 Some Remarks on lim /(£ ) Ax; 184
7 6 The Definite Integral 184
7 7 Some Preliminary Theorems on Integrals 188
7 8 Fundamental Theorem of Integral Calculus 191
7 9 Integration Continued 198
7 10 Summary 206
7 11 Techniques of Integration 2
7 12 Self Test 213
Contents ^j
Chapter 8. Applications of the Integral 214
8 1 Motion 224
8 2 On Setting Up Problems 219
8 3 Further Applications of Integration 227
8 4 Self Test 237
Chapter 9. Logarithmic and Exponential Functions 238
9 1 / — In x, and e 238
J x
9 2 Use of Tables of In x 247
9 3 The Inverse Function of y = In x, Namely, y = e* 250
9 4 Self Test 253
Chapter 10. Trigonometric Functions 255
10 1 Trigonometric Definitions 255
10 2 Limits of Trigonometric Functions 260
10 3 Derivatives of cos u and sin v 262
10 4 Derivatives of Other Trigonometric Functions 268
10 5 Integration of Trigonometric Functions 268
10 6 Self Test 274
Chapter 11. Techniques of Integration 276
11 1 Techniques 276
11 2 Integration by Parts 276
11 3 Trigonometric Substitution 280
11 4 Self Test 287
Chapter 12. Epilogue 288
Reading List 291
Answers and Hints 303
List of Symbols 355
Index 357
Table of Integrals Inside Front Cover
|
any_adam_object | 1 |
author | Andree, Richard V. |
author_facet | Andree, Richard V. |
author_role | aut |
author_sort | Andree, Richard V. |
author_variant | r v a rv rva |
building | Verbundindex |
bvnumber | BV014207831 |
callnumber-first | Q - Science |
callnumber-label | QA303 |
callnumber-raw | QA303 |
callnumber-search | QA303 |
callnumber-sort | QA 3303 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)3234386 (DE-599)BVBBV014207831 |
dewey-full | 515.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.15 |
dewey-search | 515.15 |
dewey-sort | 3515.15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01022nam a2200301 c 4500</leader><controlfield tag="001">BV014207831</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020318s1962 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)3234386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014207831</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA303</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.15</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andree, Richard V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to calculus with analytic geometry</subfield><subfield code="c">Richard V. Andree</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">1962</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 360 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009740264&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009740264</subfield></datafield></record></collection> |
id | DE-604.BV014207831 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:59:36Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009740264 |
oclc_num | 3234386 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | XI, 360 S. |
publishDate | 1962 |
publishDateSearch | 1962 |
publishDateSort | 1962 |
publisher | McGraw-Hill |
record_format | marc |
spelling | Andree, Richard V. Verfasser aut Introduction to calculus with analytic geometry Richard V. Andree New York [u.a.] McGraw-Hill 1962 XI, 360 S. txt rdacontent n rdamedia nc rdacarrier Calculus Geometry, Analytic HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009740264&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Andree, Richard V. Introduction to calculus with analytic geometry Calculus Geometry, Analytic |
title | Introduction to calculus with analytic geometry |
title_auth | Introduction to calculus with analytic geometry |
title_exact_search | Introduction to calculus with analytic geometry |
title_full | Introduction to calculus with analytic geometry Richard V. Andree |
title_fullStr | Introduction to calculus with analytic geometry Richard V. Andree |
title_full_unstemmed | Introduction to calculus with analytic geometry Richard V. Andree |
title_short | Introduction to calculus with analytic geometry |
title_sort | introduction to calculus with analytic geometry |
topic | Calculus Geometry, Analytic |
topic_facet | Calculus Geometry, Analytic |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009740264&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT andreerichardv introductiontocalculuswithanalyticgeometry |