The logic of thermostatistical physics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2002
|
Schriftenreihe: | Physics and astronomy online library
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 703 S. |
ISBN: | 3540413790 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV014037772 | ||
003 | DE-604 | ||
005 | 20020131 | ||
007 | t | ||
008 | 011127s2002 gw |||| 00||| eng d | ||
016 | 7 | |a 96288037X |2 DE-101 | |
020 | |a 3540413790 |9 3-540-41379-0 | ||
035 | |a (OCoLC)314210462 | ||
035 | |a (DE-599)BVBBV014037772 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-703 |a DE-19 |a DE-526 |a DE-634 |a DE-11 | ||
050 | 0 | |a QC311.5 | |
082 | 0 | |a 536.7 | |
084 | |a UG 3500 |0 (DE-625)145626: |2 rvk | ||
100 | 1 | |a Emch, Gérard G. |d 1936- |e Verfasser |0 (DE-588)12327415X |4 aut | |
245 | 1 | 0 | |a The logic of thermostatistical physics |c Gérard G. Emch ; Chuang Liu |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2002 | |
300 | |a XIV, 703 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics and astronomy online library | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |D s |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Liu, Chuang |d 1958- |e Verfasser |0 (DE-588)123274214 |4 aut | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009612503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009612503 |
Datensatz im Suchindex
_version_ | 1804128896882311168 |
---|---|
adam_text | CONTENTS 1. THEORIES AND MODELS: A PHILOSOPHICAL OVERVIEW ........... 1
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 1 1.2 THE SYNTACTIC VS. THE SEMANTIC VIEW
. . . . . . . . . . . . . . . . . . . . . . 2 1.3 CONCEPTIONS OF MODELS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 MODELS AND SEMANTICS: A H YBRID VIEW . . . . . . . . . . . . . . . .
. . . . 16 1.5 SEMANTIC VIEW AND THEORY TESTING (CONFIRMATION) . . . . .
. . . . 22 1.6 SEMANTIC VIEW AND THEORY REDUCTION . . . . . . . . . . .
. . . . . . . . . . 26 1.7 SEMANTIC VIEW AND STRUCTURAL EXPLANATION . .
. . . . . . . . . . . . . . 34 2. THERMOSTATICS
............................................ 39 2.1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 39 2.2 THERMOMETRY . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 41 2.3 THE MOTIVE POWER OF H EAT VS.
CONSERVATION LAWS. . . . . . . . . . . 47 2.4 ENERGY VS. ENTROPY . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 THE SYNTAX OF THERMODYNAMICS . . . . . . . . . . . . . . . . . . .
. 65 2.4.2 THE SEMANTICS OF THERMODYNAMICS . . . . . . . . . . . . . . .
. . 66 3. KINETIC THEORY OF GASES .................................. 81
3.1 A RANDOM WALK MODEL FOR DIFFUSION . . . . . . . . . . . . . . . . .
. . . . . 81 3.2 THE MAXWELL DISTRIBUTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 87 3.3 THE BOLTZMANN EQUATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4 THE
DOG-FLEA MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 106 4. CLASSICAL PROBABILITY
...................................... 113 4.1 DIFFERENT MODELS FOR
PROBABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2
FROM GAMBLERS TO STATISTICIANS . . . . . . . . . . . . . . . . . . . . .
. . . . . . 115 4.3 FROM COMBINATORICS TO ANALYSIS . . . . . . . . . . .
. . . . . . . . . . . . . . . 127 4.4 FROM H ERE TO WHERE? . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5. MODERN
PROBABILITY: SYNTAX AND MODELS . . . . . . . . . . . . . . . . . . 153
5.1 QUIET AND QUAINT NO MORE . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 153 5.2 FROM HILBERT*S 6TH PROBLEM TO KOLMOGOROV*S
SYNTAX . . . . . . . . 156 5.3 SHANNON*S ENTROPY . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 175 5.4 THE
TRANSCENDENCE OF RANDOMNESS . . . . . . . . . . . . . . . . . . . . . .
. 188 XII CONTENTS 6. MODERN PROBABILITY: COMPETING SEMANTICS
............... 199 6.1 VON MISES* SEMANTICS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 199 6.2 ALGORITHMIC COMPLEXITY
AND RANDOMNESS . . . . . . . . . . . . . . . . . 205 6.3 DE FINETTI*S
SEMANTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 215 7. SETTING-UP THE ERGODIC PROBLEM ..........................
237 7.1 BOLTZMANN*S H EURISTICS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 237 7.2 FORMAL RESPONSES: BIRKHOFF/VON
NEUMANN . . . . . . . . . . . . . . . . . 250 8. MODELS AND ERGODIC
HIERARCHY ............................ 261 8.1 MIXING PROPERTIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.2 K-SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 268 8.3 DYNAMICAL ENTROPY . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 8.4
ANOSOV PROPERTY . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 284 9. ERGODICITY VS. INTEGRABILITY
............................... 295 9.1 IS ERGODICITY GENERIC? . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 9.2
INTEGRABLE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 301 9.3 A TALE OF TWO MODELS: APPROXIMATION OR
ERROR? . . . . . . . . . . . 304 9.4 THE KAM TORI . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 9.5
CONCLUSIONS AND REMAINING ISSUES . . . . . . . . . . . . . . . . . . . .
. . . . 317 10. THE GIBBS CANONICAL ENSEMBLES ..........................
331 10.1 CLASSICAL SETTINGS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 331 10.2 QUANTUM EXTENSIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 10.2.1
TRADITIONAL FORMALISM . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 346 10.2.2 THE KMS CONDITION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 349 10.3 EARLY SUCCESSES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 357 11. PHASE
TRANSITIONS: VAN DER WAALS TO LENZ ................. 373 11.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 373 11.2 THERMODYNAMICAL MODELS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 375 11.3 MEAN-FIELD
MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 380 11.3.1 THE VAN DER WAALS MODEL OF FLUIDS . . . . . . . . . .
. . . . . . . 380 11.3.2 THE VAN DER WAALS EQUATION FROM STATISTICAL
MECHANICS 386 11.3.3 THE WEISS MODEL FOR FERROMAGNETS . . . . . . . . .
. . . . . . . . 389 12. ISING AND RELATED MODELS
................................. 393 12.1 THE 1-D ISING MODEL. NO-GO
THEOREMS . . . . . . . . . . . . . . . . . . . . 393 12.2 THE 2-D ISING
MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 403 12.3 VARIATIONS ON THE THEME OF THE ISING MODEL. . . . . . . .
. . . . . . . . 419 12.3.1 VARIATIONS ON THE INTERPRETATION OF THE
VARIABLES . . . . . 419 12.3.2 VARIATIONS INVOLVING THE RANGE OF THE
VARIABLES . . . . . . 421 12.3.3 VARIATIONS MODIFYING THE DOMAIN OR
RANGE OF THE INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 425 CONTENTS XIII 13. SCALING AND RENORMALIZATION
.............................. 431 13.1 SCALING H YPOTHESES AND SCALING
LAWS . . . . . . . . . . . . . . . . . . . . . 431 13.2 THE
RENORMALIZATION PROGRAM . . . . . . . . . . . . . . . . . . . . . . . .
. . . 435 14. QUANTUM MODELS FOR PHASE TRANSITIONS ...................
451 14.1 SUPERCONDUCTIVITY AND THE BCS MODEL . . . . . . . . . . . . . .
. . . . . . 451 14.1.1 PRELIMINARIES TO THE BCS MODEL . . . . . . . . .
. . . . . . . . . . . 451 14.1.2 THE ESSENTIALS OF THE BCS MODEL . . . .
. . . . . . . . . . . . . . . 457 14.1.3 SUPERCONDUCTIVITY AFTER BCS . .
. . . . . . . . . . . . . . . . . . . . . 461 14.2 SUPERFLUIDITY AND
BOSE*EINSTEIN CONDENSATION . . . . . . . . . . . . . 462 14.2.1 THE
EARLY DAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 462 14.2.2 MODERN DEVELOPMENTS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 467 15. APPROACH TO EQUILIBRIUM IN QUANTUM MECHANICS
......... 477 15.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 477 15.2 MASTER EQUATIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 479 15.3 APPROACH TO EQUILIBRIUM: QUANTUM MODELS . . . . . . . . . .
. . . . . . 495 16. THE PHILOSOPHICAL HORIZON
................................ 519 16.1 GENERAL ISSUES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
16.2 MODEL-BUILDING: IDEALIZATION AND APPROXIMATION . . . . . . . . . .
. 521 16.3 MODEL-BUILDING: SIMULATION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 526 16.4 RECAPITULATION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 A.
APPENDIX: MODELS IN MATHEMATICAL LOGIC ................. 539 A.1 SYNTAX
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 539 A.2 SEMANTICS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 B.
APPENDIX: THE CALCULUS OF DIFFERENTIALS .................. 553 B.1
GREEN*S THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 553 B.2 STOKES* AND GAUSS* THEOREMS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 559 B.3 H IGHER DIFFERENTIALS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 565 C. APPENDIX: RECURSIVE FUNCTIONS ........................... 575
D. APPENDIX: TOPOLOGICAL ESSENCES .......................... 585 D.1
BASIC DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 585 D.2 EXAMPLES FROM FUNCTIONAL ANALYSIS. . . .
. . . . . . . . . . . . . . . . . . . 590 D.3 SEPARABILITY AND
COMPACTNESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
D.4 THE BAIRE ESSENTIALS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 605 E. APPENDIX: MODELS VS. MODELS
............................ 607 E.1 MODELS IN WIGNER*S WRITINGS AND IN
THE THIRD WIGNER SYMPOSIUM . . . . . . . . . . . . . . . . . . . . . 607
E.2 A SEARCH FOR PRECEDENTS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 608 XIV CONTENTS E.3 THE CASE . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
611 E.4 CLOSING STATEMENTS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 613 REFERENCES
.................................................... 617 CITATION INDEX
................................................ 677 SUBJECT INDEX
................................................ 693
|
any_adam_object | 1 |
author | Emch, Gérard G. 1936- Liu, Chuang 1958- |
author_GND | (DE-588)12327415X (DE-588)123274214 |
author_facet | Emch, Gérard G. 1936- Liu, Chuang 1958- |
author_role | aut aut |
author_sort | Emch, Gérard G. 1936- |
author_variant | g g e gg gge c l cl |
building | Verbundindex |
bvnumber | BV014037772 |
callnumber-first | Q - Science |
callnumber-label | QC311 |
callnumber-raw | QC311.5 |
callnumber-search | QC311.5 |
callnumber-sort | QC 3311.5 |
callnumber-subject | QC - Physics |
classification_rvk | UG 3500 |
ctrlnum | (OCoLC)314210462 (DE-599)BVBBV014037772 |
dewey-full | 536.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.7 |
dewey-search | 536.7 |
dewey-sort | 3536.7 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01588nam a22004098c 4500</leader><controlfield tag="001">BV014037772</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020131 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">011127s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">96288037X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540413790</subfield><subfield code="9">3-540-41379-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314210462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014037772</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC311.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Emch, Gérard G.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12327415X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The logic of thermostatistical physics</subfield><subfield code="c">Gérard G. Emch ; Chuang Liu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 703 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chuang</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123274214</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009612503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009612503</subfield></datafield></record></collection> |
id | DE-604.BV014037772 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:56:32Z |
institution | BVB |
isbn | 3540413790 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009612503 |
oclc_num | 314210462 |
open_access_boolean | |
owner | DE-29T DE-703 DE-19 DE-BY-UBM DE-526 DE-634 DE-11 |
owner_facet | DE-29T DE-703 DE-19 DE-BY-UBM DE-526 DE-634 DE-11 |
physical | XIV, 703 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series2 | Physics and astronomy online library |
spelling | Emch, Gérard G. 1936- Verfasser (DE-588)12327415X aut The logic of thermostatistical physics Gérard G. Emch ; Chuang Liu Berlin [u.a.] Springer 2002 XIV, 703 S. txt rdacontent n rdamedia nc rdacarrier Physics and astronomy online library Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Statistische Thermodynamik (DE-588)4126251-7 gnd rswk-swf Statistische Thermodynamik (DE-588)4126251-7 s Mathematische Logik (DE-588)4037951-6 s DE-604 Liu, Chuang 1958- Verfasser (DE-588)123274214 aut SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009612503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Emch, Gérard G. 1936- Liu, Chuang 1958- The logic of thermostatistical physics Mathematische Logik (DE-588)4037951-6 gnd Statistische Thermodynamik (DE-588)4126251-7 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4126251-7 |
title | The logic of thermostatistical physics |
title_auth | The logic of thermostatistical physics |
title_exact_search | The logic of thermostatistical physics |
title_full | The logic of thermostatistical physics Gérard G. Emch ; Chuang Liu |
title_fullStr | The logic of thermostatistical physics Gérard G. Emch ; Chuang Liu |
title_full_unstemmed | The logic of thermostatistical physics Gérard G. Emch ; Chuang Liu |
title_short | The logic of thermostatistical physics |
title_sort | the logic of thermostatistical physics |
topic | Mathematische Logik (DE-588)4037951-6 gnd Statistische Thermodynamik (DE-588)4126251-7 gnd |
topic_facet | Mathematische Logik Statistische Thermodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009612503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT emchgerardg thelogicofthermostatisticalphysics AT liuchuang thelogicofthermostatisticalphysics |