Spin representations of the q-Poincaré algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
2001
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | München, Univ., Fak. für Physik, Diss., 2001 |
Beschreibung: | 99 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013962633 | ||
003 | DE-604 | ||
005 | 20020204 | ||
007 | t | ||
008 | 011017s2001 m||| 00||| eng d | ||
016 | 7 | |a 962986674 |2 DE-101 | |
035 | |a (OCoLC)248367480 | ||
035 | |a (DE-599)BVBBV013962633 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng |a ger | |
049 | |a DE-19 |a DE-12 | ||
100 | 1 | |a Blohmann, Christian |d 1971- |e Verfasser |0 (DE-588)123300568 |4 aut | |
245 | 1 | 0 | |a Spin representations of the q-Poincaré algebra |c von Christian Blohmann |
264 | 1 | |c 2001 | |
300 | |a 99 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a München, Univ., Fak. für Physik, Diss., 2001 | ||
650 | 4 | |a Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung | |
650 | 0 | 7 | |a Spin |0 (DE-588)4125988-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inhomogene Lorentz-Gruppe |0 (DE-588)4359420-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Inhomogene Lorentz-Gruppe |0 (DE-588)4359420-7 |D s |
689 | 0 | 1 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | 2 | |a Spin |0 (DE-588)4125988-9 |D s |
689 | 0 | 3 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009555874&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009555874 |
Datensatz im Suchindex
_version_ | 1812460690861981696 |
---|---|
adam_text |
CONTENTS
INTRODUCTION 6
1 CONSTRUCTION OF THE G-LORENTZ ALGEBRA 10
1.1 ^-SPINORS AND
SUQ(2). 11
1.1.1 9-SPINORS AND THEIR COTRANSFORMATIONS. 11
1.1.2 THE 9-SPINOR METRIC AND SLG(2). 12
1.1.3 UPPER SPINOR INDICES, CONJUGATION, AND SUQ(2) . 12
1.2 THE 9-LORENTZ GROUP. 13
1.2.1 DOTTED SPINORS. 13
1.2.2 COMMUTATION RELATIONS OF THE 9-LORENTZ GROUP. 14
1.3 THE 9-LORENTZ ALGEBRA AS DUAL OF THE 9-LORENTZ GROUP . 15
1.3.1 UQ(S\I
2
) AS DUAL OF SUQ{2). 16
1.3.2 COMPUTING THE DUAL OF THE 9-LORENTZ GROUP. 17
2 STRUCTURE OF THE G-LORENTZ ALGEBRA 20
2.1 REPRESENTATION THEORY OF THE 9-LORENTZ ALGEBRA. 20
2.1.1 THE CLEBSCH-GORDAN SERIES OF WG(SL2). 20
2.1.2 CLEBSCH-GORDAN COEFFICIENTS OF THE 9-LORENTZ ALGEBRA . 21
2.2 TENSOR OPERATORS. 22
2.2.1 TENSOR OPERATORS IN HOPF ALGEBRAS. 22
2.2.2 TENSOR OPERATORS OF
W9(SU2)
. 24
2.2.3 THE VECTOR FORM OF T/G(SU2). 25
2.3 THE 9-LORENTZ ALGEBRA AS QUANTUM DOUBLE . 27
2.3.1 ROTATIONS AND THE SUG(2)OP ALGEBRA OF BOOSTS. 27
2.3.2 L-MATRICES AND THE EXPLICIT FORM OF THE BOOST ALGEBRA . . 29
2.3.3 COMMUTATION RELATIONS BETWEEN BOOSTS AND ROTATIONS . . 30
2.4 THE VECTORIAL FORM OF THE 9-LORENTZ ALGEBRA. 62
2.4.1 TENSOR OPERATORS OF THE 9-LORENTZ ALGEBRA. 32
2.4.2 THE VECTORIAL GENERATORS. 33
2.4.3 RELATIONS WITH THE OTHER GENERATORS. 34
3 ALGEBRAIC STRUCTURE OF THE G-POINCARE ALGEBRA 36
3.1 THE 9-POINCARE ALGEBRA. 36
3.1.1 CONSTRUCTION OF THE 9-MINKOWSKI-SPACE ALGEBRA. 36
3.1.2 4-VECTORS AND THE 9-PAULI MATRICES. 37
3.1.3 COMMUTATION RELATIONS OF THE 9-POINCARE ALGEBRA. 40
3.2 THE 9-PAULI-LUBANSKI VECTOR AND THE SPIN CASIMIR. 42
3.2.1 THE 9-EUCLIDEAN ALGEBRA. 42
3.2.2 THE CENTER OF THE 9-EUCLIDEAN ALGEBRA. 44
3.2.3 THE PAULI-LUBANSKI VECTOR IN THE 9-DEFORMED SETTING . 45
BIBLIOGRAFISCHE INFORMATIONEN
HTTP://D-NB.INFO/962986674
CONTENTS
5
3.2.4 BOOSTING THE G-PAULI-LUBANSKI VECTOR. 46
3.3 THE LITTLE ALGEBRAS. 51
3.3.1 LITTLE ALGEBRAS IN THE G-DEFORMED SETTING . 51
3.3.2 COMPUTATION OF THE G-LITTLE ALGEBRAS. 53
4 MASSIVE SPIN REPRESENTATIONS 55
4.1 REPRESENTATIONS IN AN ANGULAR MOMENTUM BASIS. 55
4.1.1 THE COMPLETE SET OF COMMUTING OBSERVABLES. 55
4.1.2 REPRESENTATIONS OF THE G-EUCLIDEAN ALGEBRA. 57
4.1.3 POSSIBLE TRANSITIONS OF ENERGY AND HELICITY. 58
4.1.4 DEPENDENCE ON TOTAL ANGULAR MOMENTUM. 59
4.1.5 DEPENDENCE ON THE OTHER QUANTUM NUMBERS. 61
4.2 REPRESENTATIONS BY INDUCTION . 66
4.2.1 THE METHOD OF INDUCED REPRESENTATIONS OF ALGEBRAS . 66
4.2.2 INDUCED REPRESENTATIONS OF THE G-POINEARE ALGEBRA . 67
5 FREE WAVE EQUATIONS 69
5.1 GENERAL WAVE EQUATIONS. 69
5.1.1 WAVE EQUATIONS BY REPRESENTATION THEORY. 69
5.1.2 G-LORENTZ SPINORS. 70
5.1.3 CONJUGATE SPINORS . 72
5.2 THE G-DIRAC EQUATION. 74
5.2.1 THE G-DIRAC EQUATION IN THE REST FRAME. 74
5.2.2 THE G-GAMMA MATRICES AND THE G-CLIFFORD ALGEBRA . 75
5.2.3 THE ZERO MASS LIMIT AND THE G-WEYL EQUATIONS. 77
5.3 THE G-MAXWELL EQUATIONS . 78
5.3.1 THE G-MAXWELL EQUATIONS IN THE MOMENTUM EIGENSPACES . 78
5.3.2 COMPUTING THE G-MAXWELL EQUATION. 79
5.3.3 THE G-ELECTROMAGNETIC FIELD. 82
A USEFUL FORMULAS 84
A.L CLEBSCH-GORDAN COEFFICIENTS. 84
A. 1.1 CLEBSCH-GORDAN AND RACAH COEFFICIENTS FOR UQ{SU2) . 84
A.L.2 METRIC AND EPSILON TENSOR. 85
A.1.3 CLEBSCH-GORDAN COEFFICIENTS FOR THE G-LORENTZ ALGEBRA . . 88
A.2 REPRESENTATIONS. 90
A.2.1 REPRESENTATIONS OF (SU2). 90
A.2.2 REPRESENTATIONS OF THE G-LORENTZ ALGEBRA. 91
A.3 77-MATRICES. 92
A.3.1 THE 77-MATRIX OF UQ(SU2). 93
A.3.2 THE 77-MATRICES OF THE G-LORENTZ ALGEBRA. 94
BIBLIOGRAPHY
95 |
any_adam_object | 1 |
author | Blohmann, Christian 1971- |
author_GND | (DE-588)123300568 |
author_facet | Blohmann, Christian 1971- |
author_role | aut |
author_sort | Blohmann, Christian 1971- |
author_variant | c b cb |
building | Verbundindex |
bvnumber | BV013962633 |
ctrlnum | (OCoLC)248367480 (DE-599)BVBBV013962633 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV013962633</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020204</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">011017s2001 m||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">962986674</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248367480</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013962633</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blohmann, Christian</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123300568</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spin representations of the q-Poincaré algebra</subfield><subfield code="c">von Christian Blohmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">99 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">München, Univ., Fak. für Physik, Diss., 2001</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spin</subfield><subfield code="0">(DE-588)4125988-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inhomogene Lorentz-Gruppe</subfield><subfield code="0">(DE-588)4359420-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inhomogene Lorentz-Gruppe</subfield><subfield code="0">(DE-588)4359420-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spin</subfield><subfield code="0">(DE-588)4125988-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009555874&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009555874</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV013962633 |
illustrated | Not Illustrated |
indexdate | 2024-10-09T18:06:47Z |
institution | BVB |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009555874 |
oclc_num | 248367480 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-12 |
owner_facet | DE-19 DE-BY-UBM DE-12 |
physical | 99 S. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
record_format | marc |
spelling | Blohmann, Christian 1971- Verfasser (DE-588)123300568 aut Spin representations of the q-Poincaré algebra von Christian Blohmann 2001 99 S. txt rdacontent n rdamedia nc rdacarrier München, Univ., Fak. für Physik, Diss., 2001 Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung Spin (DE-588)4125988-9 gnd rswk-swf Inhomogene Lorentz-Gruppe (DE-588)4359420-7 gnd rswk-swf Irreduzible Darstellung (DE-588)4162430-0 gnd rswk-swf Quantengruppe (DE-588)4252437-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Inhomogene Lorentz-Gruppe (DE-588)4359420-7 s Quantengruppe (DE-588)4252437-4 s Spin (DE-588)4125988-9 s Irreduzible Darstellung (DE-588)4162430-0 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009555874&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Blohmann, Christian 1971- Spin representations of the q-Poincaré algebra Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung Spin (DE-588)4125988-9 gnd Inhomogene Lorentz-Gruppe (DE-588)4359420-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Quantengruppe (DE-588)4252437-4 gnd |
subject_GND | (DE-588)4125988-9 (DE-588)4359420-7 (DE-588)4162430-0 (DE-588)4252437-4 (DE-588)4113937-9 |
title | Spin representations of the q-Poincaré algebra |
title_auth | Spin representations of the q-Poincaré algebra |
title_exact_search | Spin representations of the q-Poincaré algebra |
title_full | Spin representations of the q-Poincaré algebra von Christian Blohmann |
title_fullStr | Spin representations of the q-Poincaré algebra von Christian Blohmann |
title_full_unstemmed | Spin representations of the q-Poincaré algebra von Christian Blohmann |
title_short | Spin representations of the q-Poincaré algebra |
title_sort | spin representations of the q poincare algebra |
topic | Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung Spin (DE-588)4125988-9 gnd Inhomogene Lorentz-Gruppe (DE-588)4359420-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Quantengruppe (DE-588)4252437-4 gnd |
topic_facet | Inhomogene Lorentz-Gruppe - Quantengruppe - Spin - Irreduzible Darstellung Spin Inhomogene Lorentz-Gruppe Irreduzible Darstellung Quantengruppe Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009555874&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT blohmannchristian spinrepresentationsoftheqpoincarealgebra |