A brief guide to algebraic number theory:
Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; othe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2001
|
Ausgabe: | 1. publ. |
Schriftenreihe: | London Mathematical Society student texts
50 |
Schlagworte: | |
Zusammenfassung: | Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. |
Beschreibung: | IX, 146 S. |
ISBN: | 0521004233 052180292X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013942810 | ||
003 | DE-604 | ||
005 | 20050114 | ||
007 | t | ||
008 | 011004s2001 |||| 00||| eng d | ||
020 | |a 0521004233 |9 0-521-00423-3 | ||
020 | |a 052180292X |9 0-521-80292-X | ||
035 | |a (OCoLC)248324040 | ||
035 | |a (DE-599)BVBBV013942810 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512/.74 |2 21 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Swinnerton-Dyer, Henry P. F. |d 1927-2018 |e Verfasser |0 (DE-588)114274185 |4 aut | |
245 | 1 | 0 | |a A brief guide to algebraic number theory |c H. P. F. Swinnerton-Dyer |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2001 | |
300 | |a IX, 146 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts |v 50 | |
520 | 3 | |a Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. | |
650 | 7 | |a Getaltheorie |2 gtt | |
650 | 4 | |a Nombres algébriques, Théorie des | |
650 | 7 | |a NÚMEROS ALGÉBRICOS |2 larpcal | |
650 | 7 | |a TEORIA DOS NÚMEROS |2 larpcal | |
650 | 4 | |a Algebraic number theory | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society student texts |v 50 |w (DE-604)BV000841726 |9 50 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-009539865 |
Datensatz im Suchindex
_version_ | 1804128787392102400 |
---|---|
any_adam_object | |
author | Swinnerton-Dyer, Henry P. F. 1927-2018 |
author_GND | (DE-588)114274185 |
author_facet | Swinnerton-Dyer, Henry P. F. 1927-2018 |
author_role | aut |
author_sort | Swinnerton-Dyer, Henry P. F. 1927-2018 |
author_variant | h p f s d hpfs hpfsd |
building | Verbundindex |
bvnumber | BV013942810 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)248324040 (DE-599)BVBBV013942810 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02509nam a2200457 cb4500</leader><controlfield tag="001">BV013942810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">011004s2001 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521004233</subfield><subfield code="9">0-521-00423-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052180292X</subfield><subfield code="9">0-521-80292-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248324040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013942810</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swinnerton-Dyer, Henry P. F.</subfield><subfield code="d">1927-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114274185</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A brief guide to algebraic number theory</subfield><subfield code="c">H. P. F. Swinnerton-Dyer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 146 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">50</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Getaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres algébriques, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NÚMEROS ALGÉBRICOS</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS NÚMEROS</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">50</subfield><subfield code="w">(DE-604)BV000841726</subfield><subfield code="9">50</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009539865</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV013942810 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:54:47Z |
institution | BVB |
isbn | 0521004233 052180292X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009539865 |
oclc_num | 248324040 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-11 DE-188 |
physical | IX, 146 S. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | London Mathematical Society student texts |
series2 | London Mathematical Society student texts |
spelling | Swinnerton-Dyer, Henry P. F. 1927-2018 Verfasser (DE-588)114274185 aut A brief guide to algebraic number theory H. P. F. Swinnerton-Dyer 1. publ. Cambridge Cambridge Univ. Press 2001 IX, 146 S. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society student texts 50 Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. Getaltheorie gtt Nombres algébriques, Théorie des NÚMEROS ALGÉBRICOS larpcal TEORIA DOS NÚMEROS larpcal Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Algebraische Zahlentheorie (DE-588)4001170-7 s DE-604 London Mathematical Society student texts 50 (DE-604)BV000841726 50 |
spellingShingle | Swinnerton-Dyer, Henry P. F. 1927-2018 A brief guide to algebraic number theory London Mathematical Society student texts Getaltheorie gtt Nombres algébriques, Théorie des NÚMEROS ALGÉBRICOS larpcal TEORIA DOS NÚMEROS larpcal Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4151278-9 |
title | A brief guide to algebraic number theory |
title_auth | A brief guide to algebraic number theory |
title_exact_search | A brief guide to algebraic number theory |
title_full | A brief guide to algebraic number theory H. P. F. Swinnerton-Dyer |
title_fullStr | A brief guide to algebraic number theory H. P. F. Swinnerton-Dyer |
title_full_unstemmed | A brief guide to algebraic number theory H. P. F. Swinnerton-Dyer |
title_short | A brief guide to algebraic number theory |
title_sort | a brief guide to algebraic number theory |
topic | Getaltheorie gtt Nombres algébriques, Théorie des NÚMEROS ALGÉBRICOS larpcal TEORIA DOS NÚMEROS larpcal Algebraic number theory Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Getaltheorie Nombres algébriques, Théorie des NÚMEROS ALGÉBRICOS TEORIA DOS NÚMEROS Algebraic number theory Algebraische Zahlentheorie Einführung |
volume_link | (DE-604)BV000841726 |
work_keys_str_mv | AT swinnertondyerhenrypf abriefguidetoalgebraicnumbertheory |