Quantum theory and its stochastic limit:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2002
|
Schriftenreihe: | Physics and astronomy online library
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 473 S. |
ISBN: | 3540419284 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV013926567 | ||
003 | DE-604 | ||
005 | 20170729 | ||
007 | t | ||
008 | 010918s2002 gw |||| 00||| eng d | ||
016 | 7 | |a 962120651 |2 DE-101 | |
020 | |a 3540419284 |9 3-540-41928-4 | ||
035 | |a (OCoLC)47767056 | ||
035 | |a (DE-599)BVBBV013926567 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-29T |a DE-91G |a DE-20 |a DE-19 |a DE-634 |a DE-11 | ||
050 | 0 | |a QC174.17.S76 | |
082 | 0 | |a 530.12 |2 21 | |
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
084 | |a PHY 020f |2 stub | ||
084 | |a PHY 015f |2 stub | ||
100 | 1 | |a Accardi, Luigi |d 1947- |e Verfasser |0 (DE-588)172488729 |4 aut | |
245 | 1 | 0 | |a Quantum theory and its stochastic limit |c Luigi Accardi ; Yun Gang Lu ; Igor Volovich |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2002 | |
300 | |a XX, 473 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics and astronomy online library | |
650 | 7 | |a Kwantummechanica |2 gtt | |
650 | 7 | |a Niet-lineaire problemen |2 gtt | |
650 | 7 | |a Stochastische analyse |2 gtt | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 1 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Lu, Yun Gang |d 1955- |e Verfasser |0 (DE-588)124092772 |4 aut | |
700 | 1 | |a Volovič, Igorʹ V. |d 1946- |e Verfasser |0 (DE-588)123091411 |4 aut | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009530233&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009530233 |
Datensatz im Suchindex
_version_ | 1804128771942383616 |
---|---|
adam_text | CONTENTS PART I. STATEMENT OF THE PROBLEM AND SIMPLEST MODELS 1.
NOTATIONS AND STATEMENT OF THE PROBLEM ................. 3 1.1 THE SCHR¨
ODINGER EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 3 1.2 WHITE NOISE APPROXIMATION FOR A FREE PARTICLE: THE BASIC FORMULA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 1.3 THE INTERACTION REPRESENTATION: PROPAGATORS . . . . . . . . . . .
. . 9 1.4 THE HEISENBERG EQUATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 10 1.5 DYNAMICAL S YSTEMS AND THEIR PERTURBATIONS
. . . . . . . . . . . . . 11 1.6 ASYMPTOTIC BEHAVIOUR OF DYNAMICAL
SYSTEMS: THE S TOCHASTIC LIMIT . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 12 1.7 S LOW AND FAST DEGREES OF FREEDOM . . .
. . . . . . . . . . . . . . . . . . . 13 1.8 THE QUANTUM TRANSPORT
COEFFICIENT: WHY JUST THE T/* 2 S CALING? . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 15 1.9 EMERGENCE OF WHITE NOISE HAMILTONIAN
EQUATIONS FROM THE S TOCHASTIC LIMIT . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 18 1.10 FROM INTERACTION TO HEISENBERG
EVOLUTIONS: CONDITIONS ON THE S TATE . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 21 1.11 FROM INTERACTION TO HEISENBERG
EVOLUTIONS: CONDITIONS ON THE OBSERVABLE. . . . . . . . . . . . . . . .
. . . . . . . . . . . 22 1.12 FORWARD AND BACKWARD LANGEVIN EQUATIONS .
. . . . . . . . . . . . . 23 1.13 THE OPEN SYSTEM APPROACH TO
DISSIPATION AND IRREVERSIBILITY: MASTER EQUATION . . . . . . . . . . . .
. . . . . . . . . 24 1.14 CLASSICAL PROCESSES DRIVING QUANTUM PHENOMENA
. . . . . . . . . 27 1.15 THE BASIC S TEPS OF THE S TOCHASTIC LIMIT . .
. . . . . . . . . . . . . . . . 27 1.16 CONNECTION WITH THE CENTRAL
LIMIT THEOREMS . . . . . . . . . . . . . 30 1.17 CLASSICAL S YSTEMS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.18 THE BACKWARD TRANSPORT COEFFICIENT AND THE ARROW OF TIME . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.19 THE MASTER
AND FOKKER*PLANCK EQUATIONS: PROJECTION TECHNIQUES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 34 1.20 THE MASTER EQUATION
IN OPEN SYSTEMS: AN HEURISTIC DERIVATION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 36 XIV CONTENTS 1.21 THE SEMICLASSICAL
APPROXIMATION FOR THE MASTER EQUATION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 38 1.22 BEYOND THE MASTER EQUATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . 40 1.23 ON THE MEANING OF
THE DECOMPOSITION H = H 0 + H I : DISCRETE S PECTRUM . . . . . . . . . .
. . . . . . . . . . . . . 42 1.24 OTHER RESCALINGS WHEN THE TIME
CORRELATIONS ARE NOT INTEGRABLE . . . . . . . . . . . 44 1.25
CONNECTIONS WITH THE CLASSICAL HOMOGENEIZATION PROBLEM . . 45 1.26
ALGEBRAIC FORMULATION OF THE S TOCHASTIC LIMIT . . . . . . . . . . . .
46 1.27 NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 49 2. QUANTUM FIELDS
.......................................... 57 2.1 CREATION AND
ANNIHILATION OPERATORS . . . . . . . . . . . . . . . . . . . . 57 2.2
GAUSSIANITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 59 2.3 TYPES OF GAUSSIAN STATES:
GAUGE-INVARIANT, SQUEEZED, FOCK AND ANTI-FOCK . . . . . . . . . . . 60
2.4 FREE EVOLUTIONS OF QUANTUM FIELDS . . . . . . . . . . . . . . . . .
. . . . . 61 2.5 S TATES INVARIANT UNDER FREE EVOLUTIONS . . . . . . . .
. . . . . . . . . . 63 2.6 EXISTENCE OF SQUEEZED STATIONARY FIELDS . . .
. . . . . . . . . . . . . . . 65 2.7 POSITIVITY OF THE COVARIANCE . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 67 2.8 DYNAMICAL
SYSTEMS IN EQUILIBRIUM: THE KMS CONDITION . . . 68 2.9 EQUILIBRIUM
STATES: THE KMS CONDITION . . . . . . . . . . . . . . . . . . 69 2.10 Q
-GAUSSIAN EQUILIBRIUM STATES . . . . . . . . . . . . . . . . . . . . . .
. . . . 70 2.11 BOSON GAUSSIANITY . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 71 2.12 BOSON FOCK FIELDS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.13
FREE HAMILTONIANS FOR BOSON FOCK FIELDS . . . . . . . . . . . . . . . .
. 75 2.14 WHITE NOISES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 76 2.15 BOSON FOCK WHITE NOISES AND
CLASSICAL WHITE NOISES . . . . . . 76 2.16 BOSON FOCK WHITE NOISES AND
CLASSICAL WIENER PROCESSES . . 77 2.17 BOSON THERMAL S TATISTICS AND
THERMAL WHITE NOISES . . . . . . 77 2.18 CANONICAL REPRESENTATION OF THE
BOSON THERMAL S TATES . . . . 79 2.19 S PECTRAL REPRESENTATION OF
QUANTUM WHITE NOISE . . . . . . . . . 81 2.20 LOCALITY OF QUANTUM FIELDS
AND ULTRALOCALITY OF QUANTUM WHITE NOISES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 83 3. THOSE KINDS OF FIELDS WE CALL NOISES
.................... 85 3.1 CONVERGENCE OF FIELDS IN THE S ENSE OF
CORRELATORS . . . . . . . . . 85 3.2 GENERALIZED WHITE NOISES AS THE
STOCHASTIC LIMIT OF GAUSSIAN FIELDS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 86 3.3 EXISTENCE OF FOCK,
TEMPERATURE AND SQUEEZED WHITE NOISES 90 3.4 CONVERGENCE OF THE FIELD
OPERATOR TO A CLASSICAL WHITE NOISE . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 92 3.5 BEYOND THE MASTER EQUATION: THE MASTER
FIELD . . . . . . . . . . . 93 3.6 DISCRETE S PECTRUM EMBEDDED IN THE
CONTINUUM . . . . . . . . . . 94 3.7 THE STOCHASTIC LIMIT OF A CLASSICAL
GAUSSIAN RANDOM FIELD 97 CONTENTS XV 3.8 S EMICLASSICAL VERSUS S
EMIQUANTUM APPROXIMATION . . . . . . . . 98 3.9 AN HISTORICAL EXAMPLE:
THE DAMPED HARMONIC OSCILLATOR. . 100 3.10 EMERGENCE OF THE WHITE NOISE:
A TRADITIONAL DERIVATION . . . 102 3.11 HEURISTIC ORIGINS OF QUANTUM
WHITE NOISE . . . . . . . . . . . . . . . 103 3.12 RELATIVISTIC QUANTUM
WHITE NOISES . . . . . . . . . . . . . . . . . . . . . 104 3.13 S
PACE*TIME RESCALINGS: MULTIDIMENSIONAL WHITE NOISES . . . . 106 3.14 THE
CHRONOLOGICAL S TOCHASTIC LIMIT . . . . . . . . . . . . . . . . . . . .
. 108 3.15 NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 111 4 . OPEN SYSTEMS
............................................ 113 4.1 THE NONRELATIVISTIC
QED HAMILTONIAN . . . . . . . . . . . . . . . . . . . 113 4.2 THE DIPOLE
APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
116 4.3 THE ROTATING-WAVE APPROXIMATION . . . . . . . . . . . . . . . .
. . . . . 117 4.4 COMPOSITE S YSTEMS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 118 4.5 ASSUMPTIONS ON THE ENVIRONMENT
(FIELD, GAS, RESERVOIR, ETC.) 119 4.6 ASSUMPTIONS ON THE S YSTEM
HAMILTONIAN . . . . . . . . . . . . . . . . . 120 4.7 THE FREE
HAMILTONIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 121 4.8 MULTIPLICATIVE (DIPOLE-TYPE) INTERACTIONS:CANONICAL FORM .
. 121 4.9 APPROXIMATIONS OF THE MULTIPLICATIVE HAMILTONIAN . . . . . . .
. 122 4.9.1 ROTATING-WAVE APPROXIMATION HAMILTONIANS . . . . . . 123
4.9.2 NO ROTATING-WAVE APPROXIMATION HAMILTONIANS WITH CUTOFF . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.9.3
NEITHER DIPOLE NOR ROTATING-WAVE APPROXIMATION HAMILTONIANS WITHOUT
CUTOFF . . . . . . . . . . . . . . . . . . . . 124 4.10 THE GENERALIZED
ROTATING-WAVE APPROXIMATION . . . . . . . . . . . 125 4.11 THE S
TOCHASTIC LIMIT OF THE MULTIPLICATIVE INTERACTION . . . . . 126 4.12 THE
NORMAL FORM OF THE WHITE NOISE HAMILTONIAN EQUATION 127 4.13 INVARIANCE
OF THE ITO CORRECTION TERM UNDER FREE S YSTEM EVOLUTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . 128 4.14 THE STOCHASTIC GOLDEN
RULE: LANGEVIN AND MASTER EQUATIONS . . . . . . . . . . . . . . . . . .
. . . . . . 129 4.15 CLASSICAL STOCHASTIC PROCESSES UNDERLYING QUANTUM
PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.16 THE
FLUCTUATION*DISSIPATION RELATION . . . . . . . . . . . . . . . . . . .
133 4.17 VACUUM TRANSITION AMPLITUDES . . . . . . . . . . . . . . . . .
. . . . . . . . 134 4.18 MASS GAP OF D + D AND S PEED OF DECAY . . . . .
. . . . . . . . . . . . . 136 4.19 HOW TO AVOID DECOHERENCE . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 137 4.20 THE ENERGY S HELL
S CALAR PRODUCT: LINEWIDTHS . . . . . . . . . . . . . 138 4.21
DISPERSION RELATIONS AND THE ITO CORRECTION TERM . . . . . . . . . 140
4.22 THE CASE: H 1 = | K 2 | . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 141 4.23 MULTIPLICATIVE COUPLING WITH THE
ROTATING WAVE APPROXIMATION: ARBITRARY GAUSSIAN S TATE . . . . . . . . .
. . . . . . . 142 4.24 MULTIPLICATIVE COUPLING WITH RWA: GAUGE INVARIANT
STATE . 143 4.25 RED S HIFTS AND BLUE S HIFTS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 144 4.26 THE FREE EVOLUTION OF THE
MASTER FIELD . . . . . . . . . . . . . . . . . . 145 XVI CONTENTS 4.27
ALGEBRAS INVARIANT UNDER THE FLOW . . . . . . . . . . . . . . . . . . .
. . . 147 4.28 NOTES. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 148 5. SPIN*BOSON SYSTEMS
...................................... 153 5.1 DROPPING THE
ROTATING-WAVE APPROXIMATION . . . . . . . . . . . . . 154 5.2 THE MASTER
FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 154 5.3 THE WHITE NOISE HAMILTONIAN EQUATION . . . . . . . . . .
. . . . . . . 157 5.4 THE OPERATOR TRANSPORT COEFFICIENT: NO
ROTATING-WAVE APPROXIMATION, ARBITRARY GAUSSIAN REFERENCE S TATE . . . .
. . . 158 5.5 DIFFERENT ROLES OF THE POSITIVE AND NEGATIVE BOHR
FREQUENCIES . . . . . . . . . . . . 159 5.6 NO ROTATING-WAVE
APPROXIMATION WITH CUTOFF: GAUGE INVARIANT S TATES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 161 5.7 NO ROTATING-WAVE
APPROXIMATION WITH CUTOFF: SQUEEZING STATES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 161 5.8 THE STOCHASTIC
GOLDEN RULE FOR DIPOLE TYPE INTERACTIONS AND GAUGE-INVARIANT S TATES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.9 THE S
TOCHASTIC GOLDEN RULE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 164 5.10 THE LANGEVIN EQUATION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 170 5.11 S UBALGEBRAS INVARIANT UNDER THE
GENERATOR. . . . . . . . . . . . . . . 172 5.12 THE LANGEVIN EQUATION:
GENERIC S YSTEMS . . . . . . . . . . . . . . . . 173 5.13 THE STOCHASTIC
GOLDEN RULE VERSUS S TANDARD PERTURBATION THEORY . . . . . . . . . . . .
. . . . . . . 176 5.14 S PIN*BOSON HAMILTONIAN . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 178 5.15 THE DAMPING AND OSCILLATING
REGIMES: FOCK CASE . . . . . . . . 181 5.16 THE DAMPING AND THE
OSCILLATING REGIMES: NONZERO TEMPERATURE . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 183 5.17 NO ROTATING-WAVE
APPROXIMATION WITHOUT CUTOFF . . . . . . . . 184 5.18 THE DRIFT TERM FOR
GAUGE-INVARIANT S TATES . . . . . . . . . . . . . . . 185 5.19 THE FREE
EVOLUTION OF THE MASTER FIELD . . . . . . . . . . . . . . . . . . 187
5.20 THE STOCHASTIC LIMIT OF THE GENERALIZED S PIN*BOSON HAMILTONIAN . .
. . . . . . . . . . . . 187 5.21 THE LANGEVIN EQUATION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 190 5.22 CONVERGENCE TO
EQUILIBRIUM: CONNECTIONS WITH QUANTUM MEASUREMENT . . . . . . . . . . .
. . . . . 191 5.23 CONTROL OF COHERENCE . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 194 5.24 DYNAMICS OF S PIN S YSTEMS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.25
NONSTATIONARY WHITE NOISES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 201 5.26 NOTES. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 202 6. MEASUREMENTS AND
FILTERING THEORY ...................... 205 6.1 INPUT*OUTPUT CHANNELS. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.2 THE
FILTERING PROBLEM IN CLASSICAL PROBABILITY . . . . . . . . . . . . 206
6.3 FIELD MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 207 6.4 PROPERTIES OF THE INPUT AND OUTPUT PROCESSES
. . . . . . . . . . . . 210 CONTENTS XVII 6.5 THE FILTERING PROBLEM IN
QUANTUM THEORY . . . . . . . . . . . . . . . 213 6.6 FILTERING OF A
QUANTUM SYSTEM OVER A CLASSICAL PROCESS . . . 214 6.7 NONDEMOLITION
PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
215 6.8 STANDARD SCHEME TO CONSTRUCT EXAMPLES OF NONDEMOLITION
MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . 217 6.9
DISCRETE TIME NONDEMOLITION PROCESSES . . . . . . . . . . . . . . . . .
. 217 6.10 NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 218 7. IDEA OF THE PROOF AND
CAUSAL NORMAL ORDER .............. 219 7.1 TERM-BY-TERM CONVERGENCE OF
THE S ERIES . . . . . . . . . . . . . . . . . 219 7.2 VACUUM TRANSITION
AMPLITUDE: THE FOURTH-ORDER TERM . . . 220 7.3 VACUUM TRANSITION
AMPLITUDE: NON-TIME-CONSECUTIVE DIAGRAMS . . . . . . . . . . . . . . . .
. . . . . . . . 223 7.4 THE CAUSAL * -FUNCTION AND THE TIME-CONSECUTIVE
PRINCIPLE 225 7.5 THEORY OF DISTRIBUTIONS ON THE S TANDARD S IMPLEX . .
. . . . . . . 227 7.6 THE SECOND-ORDER TERM OF THE LIMIT VACUUM
AMPLITUDE . . 230 7.7 THE FOURTH-ORDER TERM OF THE LIMIT VACUUM
AMPLITUDE . . 230 7.8 HIGHER-ORDER TERMS OF THE VACUUM*VACUUM AMPLITUDE
. . . 231 7.9 PROOF OF THE NORMAL FORM OF THE WHITE NOISE HAMILTONIAN
EQUATION . . . . . . . . . . . . . . . . 231 7.10 THE UNITARITY
CONDITION FOR THE LIMIT EQUATION . . . . . . . . . . 233 7.11 NORMAL
FORM OF THE THERMAL WHITE NOISE EQUATION: BOSON CASE . . . . . . . . 234
7.12 FROM WHITE NOISE CALCULUS TO S TOCHASTIC CALCULUS . . . . . . . .
235 8. CHRONOLOGICAL PRODUCT APPROACH TO THE STOCHASTIC LIMIT . 237 8.1
CHRONOLOGICAL PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 237 8.2 CHRONOLOGICAL PRODUCT APPROACH TO THE STOCHASTIC
LIMIT . . . 238 8.3 THE LIMIT OF THE N TH TERM, TIME-ORDERED PRODUCT
APPROACH: VACUUM EXPECTATION . . . . 242 8.4 THE STOCHASTIC LIMIT,
TIME-ORDERED PRODUCT APPROACH: GENERAL CASE . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 244 9. FUNCTIONAL
INTEGRAL APPROACH TO THE STOCHASTIC LIMIT ..... 247 9.1 S TATEMENT OF
THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
247 9.2 THE S TOCHASTIC LIMIT OF THE FREE MASSIVE S CALAR FIELD . . . .
. 248 9.3 THE S TOCHASTIC LIMIT OF THE FREE MASSLESS S CALAR FIELD . . .
. . 250 9.4 POLYNOMIAL INTERACTIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 251 9.5 THE S TOCHASTIC LIMIT OF THE
ELECTROMAGNETIC FIELD . . . . . . . . 253 10. LOW-DENSITY LIMIT: THE
BASIC IDEA ....................... 255 10.1 THE LOW-DENSITY LIMIT: FOCK
CASE, NO S YSTEM . . . . . . . . . . . 255 10.2 THE LOW-DENSITY LIMIT:
FOCK CASE, ARBITRARY S YSTEM OPERATOR . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 257 XVIII CONTENTS 10.3 COMPARISON OF THE
DISTRIBUTION AND THE S TOCHASTIC APPROACH . . . . . . . . . . . . . . .
. . . . . . . . . . . . 258 10.4 LDL GENERAL, FOCK CASE, NO SYSTEM
OPERATOR, * = 0 . . . . . 259 11. SIX BASIC PRINCIPLES OF THE STOCHASTIC
LIMIT ............... 261 11.1 POLYNOMIAL INTERACTIONS WITH CUTOFF . . .
. . . . . . . . . . . . . . . . . . 262 11.2 ASSUMPTIONS ON THE
DYNAMICS: S TANDARD MODELS . . . . . . . . . . 263 11.3 POLYNOMIAL
INTERACTIONS: CANONICAL FORMS, FOCK CASE . . . . . . 266 11.4 POLYNOMIAL
INTERACTIONS: CANONICAL FORMS, GAUGE-INVARIANT CASE . . . . . . . . . .
. . . . . . . . 269 11.5 THE S TOCHASTIC UNIVERSALITY CLASS PRINCIPLE .
. . . . . . . . . . . . . . 275 11.6 THE CASE OF MANY INDEPENDENT FIELDS
. . . . . . . . . . . . . . . . . . . 277 11.7 THE BLOCK PRINCIPLE: FOCK
CASE . . . . . . . . . . . . . . . . . . . . . . . . . 278 11.8 THE S
TOCHASTIC RESONANCE PRINCIPLE . . . . . . . . . . . . . . . . . . . . .
280 11.9 THE ORTHOGONALIZATION PRINCIPLE . . . . . . . . . . . . . . . .
. . . . . . . . 280 11.10 THE S TOCHASTIC BOSONIZATION PRINCIPLE . . . .
. . . . . . . . . . . . . . . 280 11.11 THE TIME-CONSECUTIVE PRINCIPLE .
. . . . . . . . . . . . . . . . . . . . . . . 282 PART II. STRONGLY
NONLINEAR REGIMES 12. PARTICLES INTERACTING WITH A BOSON FIELD
.................. 285 12.1 A S INGLE PARTICLE INTERACTING WITH A BOSON
FIELD . . . . . . . . . . 287 12.2 DYNAMICAL Q -DEFORMATION: EMERGENCE
OF THE ENTANGLED COMMUTATION RELATIONS . . . . . . . . . . . . . . . .
289 12.3 THE TWO-POINT AND FOUR-POINT CORRELATORS . . . . . . . . . . .
. . . . 291 12.4 THE STOCHASTIC LIMIT OF THE N -POINT CORRELATOR . . . .
. . . . . . . 293 12.5 THE Q -DEFORMED MODULE WICK THEOREM . . . . . . .
. . . . . . . . . . 296 12.6 THE WICK THEOREM FOR THE QED MODULE . . . .
. . . . . . . . . . . . . 301 12.7 THE LIMIT WHITE NOISE HAMILTONIAN
EQUATION . . . . . . . . . . . . 302 12.8 FREE INDEPENDENCE OF THE
INCREMENTS OF THE MASTER FIELD . . . 304 12.9 BOLTZMANNIAN WHITE NOISE
HAMILTONIAN EQUATIONS: NORMAL FORM . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 306 12.10 UNITARITY
CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 309 12.11 MATRIX ELEMENTS OF THE S OLUTION . . . . . . . . . . . .
. . . . . . . . . . . . 310 12.12 NORMAL FORM OF THE QED MODULE
HAMILTONIAN EQUATION. . . 312 12.13 UNITARITY OF THE S OLUTION: DIRECT
PROOF . . . . . . . . . . . . . . . . . . . 313 12.14 MATRIX ELEMENTS OF
THE LIMIT EVOLUTION OPERATOR . . . . . . . . . 314 12.15 NONEXPONENTIAL
DECAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
317 12.16 EQUILIBRIUM STATES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 321 12.17 THE MASTER FIELD . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 12.18 PROOF
OF THE RESULT FOR THE TWO- AND FOUR-POINT CORRELATORS . . . . . . . . .
. . . . . . . . 322 12.19 THE VANISHING OF THE CROSSING DIAGRAMS . . . .
. . . . . . . . . . . . . 324 12.20 THE HOT FREE ALGEBRA . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 333 CONTENTS XIX 12.21
INTERACTION OF THE QEM FIELD WITH A NONFREE PARTICLE . . . . . . 335
12.22 THE LIMIT TWO-POINT FUNCTION . . . . . . . . . . . . . . . . . . .
. . . . . . 338 12.23 THE LIMIT FOUR-POINT FUNCTION . . . . . . . . . .
. . . . . . . . . . . . . . 342 12.24 THE LIMIT HILBERT MODULE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 344 12.25 THE LIMIT S
TOCHASTIC PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . .
347 12.26 THE S TOCHASTIC DIFFERENTIAL EQUATION . . . . . . . . . . . .
. . . . . . . . 348 12.27 NOTES. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 349 13. THE
ANDERSON MODEL ..................................... 351 13.1
NONRELATIVISTIC FERMIONS IN EXTERNAL POTENTIAL: THE ANDERSON MODEL . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 13.2
THE LIMIT OF THE CONNECTED CORRELATORS . . . . . . . . . . . . . . . . .
355 13.3 THE FOUR-POINT FUNCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 356 13.4 THE LIMIT OF THE CONNECTED TRANSITION
AMPLITUDE . . . . . . . . 359 13.5 PROOF OF (13.4.3) . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13.6 S
OLUTION OF THE NONLINEAR EQUATION (13.4.2) . . . . . . . . . . . . . .
365 13.7 NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 367 14. FIELD*FIELD INTERACTIONS
.................................. 369 14.1 INTERACTING COMMUTATION
RELATIONS . . . . . . . . . . . . . . . . . . . . . 369 14.2 THE
TRI-LINEAR HAMILTONIAN WITH MOMENTUM CONSERVATION . 373 14.3 PROOF OF
THEOREM 14.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 375 14.4 EXAMPLE: FOUR INTERNAL LINES . . . . . . . . . . . . . . .
. . . . . . . . . . . . 379 14.5 THE S TOCHASTIC LIMIT FOR GREEN
FUNCTIONS . . . . . . . . . . . . . . . . 380 14.6 SECOND QUANTIZED
REPRESENTATION OF THE NONRELATIVISTIC QED HAMILTONIAN . . . . . . . . .
. . . . . . . . 381 14.7 INTERACTING COMMUTATION RELATIONS AND QED
MODULE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
383 14.8 DECAY AND THE UNIVERSALITY CLASS OF THE QED HAMILTONIAN . 384
14.9 PHOTON S PLITTING CASCADES AND NEW S TATISTICS . . . . . . . . . .
. . 386 PART III. ESTIMATES AND PROOFS 15. ANALYTICAL THEORY OF FEYNMAN
DIAGRAMS ................. 393 15.1 THE CONNECTED COMPONENT THEOREM . .
. . . . . . . . . . . . . . . . . . 395 15.2 THE FACTORIZATION THEOREM .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 402 15.3 THE CASE
OF MANY INDEPENDENT FIELDS . . . . . . . . . . . . . . . . . . . 411
15.4 THE FERMI BLOCK THEOREM . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 411 15.5 NON-TIME-CONSECUTIVE TERMS: THE FIRST VANISHING
THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . 416 15.6
NON-TIME CONSECUTIVE TERMS: THE S ECOND VANISHING THEOREM . . . . . . .
. . . . . . . . . . . . . . . . . . 419 15.7 THE TYPE-I TERM THEOREM . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 423 15.8 THE
DOUBLE INTEGRAL LEMMA . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 431 XX CONTENTS 15.9 THE MULTIPLE-S IMPLEX THEOREM . . . . . . . .
. . . . . . . . . . . . . . . . . 435 15.10 THE MULTIPLE INTEGRAL LEMMA
. . . . . . . . . . . . . . . . . . . . . . . . . . 438 15.11 THE S
ECOND MULTIPLE-S IMPLEX THEOREM . . . . . . . . . . . . . . . . . . 439
15.12 SOME COMBINATORIAL FACTS AND THE BLOCK NORMAL ORDERING THEOREM . .
. . . . . . . . . . . . . . 446 16. TERM-BY-TERM CONVERGENCE
.............................. 453 16.1 THE UNIVERSALITY CLASS PRINCIPLE
AND EFFECTIVE INTERACTION HAMILTONIANS . . . . . . . . . . . . . . . . .
. . 455 16.2 BLOCK AND ORTHOGONALIZATION PRINCIPLES . . . . . . . . . .
. . . . . . . . 458 16.3 THE S TOCHASTIC RESONANCE PRINCIPLE . . . . . .
. . . . . . . . . . . . . . . 459 REFERENCES
.................................................... 461 INDEX
......................................................... 469
|
any_adam_object | 1 |
author | Accardi, Luigi 1947- Lu, Yun Gang 1955- Volovič, Igorʹ V. 1946- |
author_GND | (DE-588)172488729 (DE-588)124092772 (DE-588)123091411 |
author_facet | Accardi, Luigi 1947- Lu, Yun Gang 1955- Volovič, Igorʹ V. 1946- |
author_role | aut aut aut |
author_sort | Accardi, Luigi 1947- |
author_variant | l a la y g l yg ygl i v v iv ivv |
building | Verbundindex |
bvnumber | BV013926567 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.S76 |
callnumber-search | QC174.17.S76 |
callnumber-sort | QC 3174.17 S76 |
callnumber-subject | QC - Physics |
classification_rvk | UK 1200 |
classification_tum | PHY 020f PHY 015f |
ctrlnum | (OCoLC)47767056 (DE-599)BVBBV013926567 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02214nam a22005778c 4500</leader><controlfield tag="001">BV013926567</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170729 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010918s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">962120651</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540419284</subfield><subfield code="9">3-540-41928-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47767056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013926567</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.S76</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 015f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Accardi, Luigi</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172488729</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum theory and its stochastic limit</subfield><subfield code="c">Luigi Accardi ; Yun Gang Lu ; Igor Volovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 473 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kwantummechanica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niet-lineaire problemen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Yun Gang</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124092772</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volovič, Igorʹ V.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123091411</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009530233&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009530233</subfield></datafield></record></collection> |
id | DE-604.BV013926567 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:54:33Z |
institution | BVB |
isbn | 3540419284 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009530233 |
oclc_num | 47767056 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-634 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-634 DE-11 |
physical | XX, 473 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series2 | Physics and astronomy online library |
spelling | Accardi, Luigi 1947- Verfasser (DE-588)172488729 aut Quantum theory and its stochastic limit Luigi Accardi ; Yun Gang Lu ; Igor Volovich Berlin [u.a.] Springer 2002 XX, 473 S. txt rdacontent n rdamedia nc rdacarrier Physics and astronomy online library Kwantummechanica gtt Niet-lineaire problemen gtt Stochastische analyse gtt Quantentheorie Quantum theory Stochastic processes Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastik (DE-588)4121729-9 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Stochastik (DE-588)4121729-9 s DE-604 Quantentheorie (DE-588)4047992-4 s Stochastischer Prozess (DE-588)4057630-9 s Lu, Yun Gang 1955- Verfasser (DE-588)124092772 aut Volovič, Igorʹ V. 1946- Verfasser (DE-588)123091411 aut SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009530233&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Accardi, Luigi 1947- Lu, Yun Gang 1955- Volovič, Igorʹ V. 1946- Quantum theory and its stochastic limit Kwantummechanica gtt Niet-lineaire problemen gtt Stochastische analyse gtt Quantentheorie Quantum theory Stochastic processes Quantenmechanik (DE-588)4047989-4 gnd Quantentheorie (DE-588)4047992-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastik (DE-588)4121729-9 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4047992-4 (DE-588)4057630-9 (DE-588)4121729-9 |
title | Quantum theory and its stochastic limit |
title_auth | Quantum theory and its stochastic limit |
title_exact_search | Quantum theory and its stochastic limit |
title_full | Quantum theory and its stochastic limit Luigi Accardi ; Yun Gang Lu ; Igor Volovich |
title_fullStr | Quantum theory and its stochastic limit Luigi Accardi ; Yun Gang Lu ; Igor Volovich |
title_full_unstemmed | Quantum theory and its stochastic limit Luigi Accardi ; Yun Gang Lu ; Igor Volovich |
title_short | Quantum theory and its stochastic limit |
title_sort | quantum theory and its stochastic limit |
topic | Kwantummechanica gtt Niet-lineaire problemen gtt Stochastische analyse gtt Quantentheorie Quantum theory Stochastic processes Quantenmechanik (DE-588)4047989-4 gnd Quantentheorie (DE-588)4047992-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastik (DE-588)4121729-9 gnd |
topic_facet | Kwantummechanica Niet-lineaire problemen Stochastische analyse Quantentheorie Quantum theory Stochastic processes Quantenmechanik Stochastischer Prozess Stochastik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009530233&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT accardiluigi quantumtheoryanditsstochasticlimit AT luyungang quantumtheoryanditsstochasticlimit AT volovicigorʹv quantumtheoryanditsstochasticlimit |