Neural networks in optimization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer Acad. Publ.
2000
|
Schriftenreihe: | Nonconvex optimization and its applications
46 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 367 S. graph. Darst. |
ISBN: | 0792365151 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013891191 | ||
003 | DE-604 | ||
005 | 20030827 | ||
007 | t | ||
008 | 010904s2000 ne d||| |||| 00||| eng d | ||
020 | |a 0792365151 |9 0-7923-6515-1 | ||
035 | |a (OCoLC)247429112 | ||
035 | |a (DE-599)BVBBV013891191 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a ne |c XA-NL | ||
049 | |a DE-20 |a DE-521 | ||
050 | 0 | |a QA402.5.Z4 2000 | |
082 | 0 | |a 519.3/0285/632 |2 21 | |
082 | 0 | |a 519.3/0285/632 21 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a ST 200 |0 (DE-625)143611: |2 rvk | ||
100 | 1 | |a Zhang, Xiang-Sun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural networks in optimization |c by Xiang-Sun Zhang |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer Acad. Publ. |c 2000 | |
300 | |a XII, 367 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Nonconvex optimization and its applications |v 46 | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematical optimization -- Data processing | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Nonconvex optimization and its applications |v 46 |w (DE-604)BV010085908 |9 46 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009504432&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009504432 |
Datensatz im Suchindex
_version_ | 1806142869999714304 |
---|---|
adam_text |
Contents
List of Figures ix
Preface xi
Part I CONCEPTS AND MODELS OF OPTIMIZATION
1. PRELIMINARIES 3
1.1 Mathematical Symbols 3
1.2 Pidgin Algol Language 5
1.3 Vectors and Matrices 6
1.3.1 Norms 7
1.3.2 Eigenvalues and Eigenvectors of Matrix 8
1.3.3 Condition Number 9
1.3.4 Vector Projection 11
1.4 Convex Set and Convex Function 12
1.5 Digraph and Network 14
1.6 Algorithm Complexity and Problem Complexity 16
1.6.1 Iterating Algorithms and Convergence 16
1.6.2 Speed of Convergence 17
1.6.3 Complexity 18
1.7 Concepts of Ordinary Differential Equations 24
1.8 Markov Chain 28
2. INTRODUCTION TO MATHEMATICAL PROGRAMMING 31
2.1 Basics of Linear Programming 31
2.1.1 Duality in LP 33
2.1.2 Degeneracy 34
2.1.3 Formulate Combinatorial Optimization Problem as LP 35
2.2 Classical Algorithms for LP 38
2.2.1 The Simplex Method 38
2.2.2 Polynomial time Algorithms for LP 39
2.3 Basics of Nonlinear Programming 40
2.4 Convex Programming 45
v
vi NEURAL NETWORKS IN OPTIMIZATION
2.5 Quadratic Programming and SQPM 46
2.6 Duality in Nonlinear Programming 48
2.6.1 Lagrangian Duality 48
2.6.2 Conjugate Duality 49
3. UNCONSTRAINED NONLINEAR PROGRAMMING 53
3.1 Newton Method 54
3.2 Gradient Method 55
3.3 Quasi Newton Method 59
3.4 Conjugate Gradient Method 60
3.5 Trust Region Method for Unconstrained Problems 62
4. CONSTRAINED NONLINEAR PROGRAMMING 65
4.1 Exterior Penalty Method 66
4.2 Interior Penalty Method 67
4.3 Exact Penalty Method 69
4.4 Lagrangian Multiplier Method 74
4.5 Projected Lagrangian Methods 77
4.5.1 Methods with Linearly Constrained Subproblems 77
4.5.2 QP Based Methods 78
4.6 Trust Region Method for Constrained Problem 79
Part II BASIC ARTIFICIAL NEURAL NETWORK MODELS
5. INTRODUCTION TO ARTIFICIAL NEURAL NETWORK 83
5.1 What Is an Artificial Neuron? 84
5.2 Feedforward and Feedback Structures 90
6. FEEDFORWARD NEURAL NETWORKS 95
6.1 Adaline 95
6.2 Simple Perceptron 101
6.2.1 Discrete Perceptron: Hebb's Learning Rule 102
6.2.2 Continuous Perceptron: Nonlinear LMS Learning 105
6.3 Multilayer Perceptrons and Extensions 107
6.3.1 Wavelet Perceptron 112
6.3.2 Fourier Perceptron 113
6.4 Back Propagation 117
6.5 Optimization Layer by Layer 122
6.6 Local Solution Effect 130
7. FEEDBACK NEURAL NETWORKS 137
7.1 Convergence Analysis for discrete Feedback Networks 140
7.2 Discrete Hopfield Net as Content addressable Memory 153
7.2.1 Network Capacity Analysis 154
7.2.2 Spurious Patterns 158
7.3 Continuous Feedback Networks 163
Contents vii
7.3.1 Cotinuous Hopfield Network as Content addressable
Memory 165
7.3.2 Sigmoidal Neuron and Integrator Neuron 167
7.3.3 Exponential Asymptotic Stability 170
8. SELF ORGANIZED NEURAL NETWORKS 177
8.1 Basic Concept of Self Organization 177
8.2 Competitive Learning Network — Kohonen Network 179
8.3 Convergence Analysis 185
Part III NEURAL ALGORITHMS FOR OPTIMIZATION
9. NN MODELS FOR COMBINATORIAL PROBLEMS 199
9.1 Feasibility and Efficiency 199
9.2 Complexity Analysis 205
9.3 Solving TSP by Neural Networks 207
9.3.1 Continuous Hopfield and Tank Model (CHTM) 209
9.3.2 Discrete Hopfield Network (DHN) as TSP Solver 216
9.3.3 Elastic net as TSP Solver 220
9.3.4 Kohonen Network as TSP Solver 222
9.3.5 Some Simulation Results 224
9.4 NN Models for Four Color Map Problem 226
9.5 NN Models for Vertex Cover Problem 234
9.6 Discussion 236
10. NN FOR QUADRATIC PROGRAMMING PROBLEMS 243
10.1 Simple Limiter Neural Nets for QP 245
10.1.1 Kennedy Chua Model 245
10.1.2 Analysis from Optimization Theory 247
10.2 Saturation Limiter Neural Nets for QP 249
10.3 Sigmoid Limiter Neural Nets for QP 255
10.4 Integrator Neural Nets for QP 261
10.4.1 Lagrange Neural Net A Conceptual 262
10.4.2 Lagrange Net for QP 268
11. NN FOR GENERAL NONLINEAR PROGRAMMING 273
11.1 NP Nets with Trust Region Strategy 273
11.1.1 Solving Unconstrained NP by Sigmoid Limiter Net 274
11.1.2 Solving Constrained NP by Sigmoid Limiter Net 282
12. NN FOR LINEAR PROGRAMMING 289
12.1 Simple limiter Neural Nets for LP 289
12.1.1 Kennedy Chua Model for Solving LP 289
12.1.2 A Non parametric Simple Limiter Net for LP 296
12.2 Hard Limiter Neural Nets for LP 301
12.2.1 ZULH Model for Solving LP 301
12.2.2 Weight Parameter Estimation 303
viii NEURAL NETWORKS IN OPTIMIZATION
12.2.3 A Subnet for selecting the Muximum Input 306
12.3 Sigmoid Limiter Neural Nets for LP 307
12.3.1 Sigmoid limiter Net with Time Varing Threshold 307
12.3.2 A Sigmoid Limiter Net Based on the Primal Dual
Model 310
12.4 Integrator Neural Network for LP 315
13. A REVIEW ON NN FOR CONTINUIOUS OPTIMIZATION 319
13.1 Framework of Classification 319
13.1.1 simple limiter N etwork 320
13.1.2 Hard Limiter Network 322
13.1.3 Saturation Limiter Network 324
13.1.4 Sigmoid Limiter Network 325
13.1.5 Integrator Network 327
13.2 Some New Network Models Motivated by the Framework 329
13.2.1 A Hard Limiter Network for QP 329
13.2.2 A Non parametric Hard Limiter Network for QP 330
References 335
Index
363
List of Figures
1.1 The weighted layer network and the feedback network 16
1.2 An updated conjectured topography of NP and co NP ([240)) 21
5.1 General structure of a neuron with linear accumulation function 85
5.2 Active function for neural networks 86
5.3 The Fukushima neuron with simple limiters 87
5.4 The Hopfield amplifier neuron 88
5.5 The Grossberg neuron model 90
5.6 The general structure of the feedback neural network 93
6.1 Adaptive linear neuron (Adaline) 95
6.2 Figure for Example 6.4. 99
6.3 A single layer perceptron 101
6.4 XOR function 108
6.5 A typical perceptron 108
6.6 Perceptron with hidden layers 1 10
6.7 A condensed flow chart of the perceptron in Fig.6.6 1 10
6.8 Fourier perceptron. 114
6.9 Back propagation 1 18
6.10 A 2 dimensional linearly separable example 131
6.11 Contour map of the error function in Example 6.21. 132
6.12 Contour map of the error function in Example 6.22. 1 33
6.13 Separate planes obtained at different local minima. 133
6.14 A multilayer perceptron without thresholds. 1 34
6.15 Multilayer perceptron with thresholds. 1 34
6.16 An unsymmetric XOR problem. 135
6.17 Separating planes for the unsymmetric XOR problem. 135
6.18 XOR problem illustrated in Case 2 . 136
6.19 XOR problem illustrated in Case 3. 136
7.1 General structure of a single layer feedback neural network 138
7.2 Single layer discrete feedback network as an undirected graph 140
ix
x NEURAL NETWORKS IN OPTIMIZATION
7.3 Discrete Hopfield network 154
7.4 A general continuous feedback network 164
8.1 Lateral feedbacks in a feedforward network 178
8.2 The mexican hat function describing the lateral interaction 179
8.3 Basic structure of a two dimensional Kohonen net 180
8.4 The Gaussian function concave at 0; and the convex exponential
function convex at 0. 195
9.1 A Hopfield type network with time delay feedback. 213
9.2 A sketch for the process of an elastic net 221
9.3 Kohonen (KH) network solving TSP 223
9.4 The best tour of 33 city TSP given by the Hopfield Tank's method 226
9.5 The best tour of 33 city TSP given by the CGM 226
9.6 The best path of 33 city TSP by using both Kohonen method and the SKH 227
9.7 The best path of 100 city TSP by using the CGM 227
9.8 The best path of 100 city TSP by using Kohonen method 227
9.9 The best path of 100 city TSP by using the SKH 227
9.10 A colored map with 5 countries, (from [279]) 229
9.11 Neural presentation for the five country map 230
9.12 A 48 state map of the continental United States (from [15]). 233
10.1 A simple limiter network for solving QP 246
10.2 A saturation limiter 250
10.3 A saturation limiter net for QP 252
10.4 Structure of the NN described by (10.37) and (10.38) 256
10.5 An example with infinitely many equilibrium points . 261
10.6 An integrator net for QP with equality constraints 269
10.7 An integrator net for QP with inequality constraints 271
11.1 the ZZJ model used to solve unconstrained NP 277
11.2 box "accept xk+1?" 277
11.3 Using TRM net to solve the problem in Example 11.7 282
11.4 the TRM net used to solve constrained NP problems. 286
11.5 box "accept xk+1?" 286
11.6 The trajectories of components Xi(t),i = 1, ••¦ ,5 of x(t). 287
12.1 the Kennedy Chua network for solving LP 291
12.2 the non parametric simple limiter net for solving LP 299
12.3 A one norm hard limiter network for solving LP 302
12.4 A infinity norm hard limiter network for solving LP 304
12.5 A network to solve max{xi,a 2} 307
12.6 A network to solve max {x\, ¦¦¦ ,xg} 308
12.7 An integrator net for LP with inequality constraints 317
13.1 A hard limiter net for QP 332 |
any_adam_object | 1 |
author | Zhang, Xiang-Sun |
author_facet | Zhang, Xiang-Sun |
author_role | aut |
author_sort | Zhang, Xiang-Sun |
author_variant | x s z xsz |
building | Verbundindex |
bvnumber | BV013891191 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.5.Z4 2000 |
callnumber-search | QA402.5.Z4 2000 |
callnumber-sort | QA 3402.5 Z4 42000 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 870 ST 200 |
ctrlnum | (OCoLC)247429112 (DE-599)BVBBV013891191 |
dewey-full | 519.3/0285/632 519.3/0285/63221 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3/0285/632 519.3/0285/632 21 |
dewey-search | 519.3/0285/632 519.3/0285/632 21 |
dewey-sort | 3519.3 3285 3632 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV013891191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030827</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010904s2000 ne d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792365151</subfield><subfield code="9">0-7923-6515-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247429112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013891191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.5.Z4 2000</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3/0285/632</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3/0285/632 21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 200</subfield><subfield code="0">(DE-625)143611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xiang-Sun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural networks in optimization</subfield><subfield code="c">by Xiang-Sun Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 367 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">46</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization -- Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">46</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">46</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009504432&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009504432</subfield></datafield></record></collection> |
id | DE-604.BV013891191 |
illustrated | Illustrated |
indexdate | 2024-08-01T00:27:46Z |
institution | BVB |
isbn | 0792365151 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009504432 |
oclc_num | 247429112 |
open_access_boolean | |
owner | DE-20 DE-521 |
owner_facet | DE-20 DE-521 |
physical | XII, 367 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Kluwer Acad. Publ. |
record_format | marc |
series | Nonconvex optimization and its applications |
series2 | Nonconvex optimization and its applications |
spelling | Zhang, Xiang-Sun Verfasser aut Neural networks in optimization by Xiang-Sun Zhang Dordrecht [u.a.] Kluwer Acad. Publ. 2000 XII, 367 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nonconvex optimization and its applications 46 Datenverarbeitung Mathematical optimization -- Data processing Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Optimierung (DE-588)4043664-0 s Neuronales Netz (DE-588)4226127-2 s DE-604 Nonconvex optimization and its applications 46 (DE-604)BV010085908 46 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009504432&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhang, Xiang-Sun Neural networks in optimization Nonconvex optimization and its applications Datenverarbeitung Mathematical optimization -- Data processing Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4043664-0 |
title | Neural networks in optimization |
title_auth | Neural networks in optimization |
title_exact_search | Neural networks in optimization |
title_full | Neural networks in optimization by Xiang-Sun Zhang |
title_fullStr | Neural networks in optimization by Xiang-Sun Zhang |
title_full_unstemmed | Neural networks in optimization by Xiang-Sun Zhang |
title_short | Neural networks in optimization |
title_sort | neural networks in optimization |
topic | Datenverarbeitung Mathematical optimization -- Data processing Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Datenverarbeitung Mathematical optimization -- Data processing Neural networks (Computer science) Neuronales Netz Optimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009504432&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT zhangxiangsun neuralnetworksinoptimization |