Exploring analytic geometry with Mathematica:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
San Diego [u.a.]
Acad. Press
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 865 S. graph. Darst. CD-ROM ; 12 cm |
ISBN: | 0127282556 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013862191 | ||
003 | DE-604 | ||
005 | 20140212 | ||
007 | t | ||
008 | 010810s2000 d||| |||| 00||| eng d | ||
020 | |a 0127282556 |9 0-12-728255-6 | ||
035 | |a (OCoLC)44469214 | ||
035 | |a (DE-599)BVBBV013862191 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-91G | ||
050 | 0 | |a QA551.5 | |
082 | 0 | |a 516.3 |2 21 | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a DAT 306f |2 stub | ||
084 | |a MAT 516f |2 stub | ||
100 | 1 | |a Vossler, Donald L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Exploring analytic geometry with Mathematica |c Donald L. Vossler |
264 | 1 | |a San Diego [u.a.] |b Acad. Press |c 2000 | |
300 | |a XVIII, 865 S. |b graph. Darst. |e CD-ROM ; 12 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
630 | 0 | 4 | |a Mathematica (Computer file) |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Geometry, Analytic |x Data processing | |
650 | 0 | 7 | |a Mathematica 4.0 |0 (DE-588)4594933-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematica 3.0 |0 (DE-588)4442935-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | 1 | |a Mathematica 4.0 |0 (DE-588)4594933-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 1 | 1 | |a Mathematica 3.0 |0 (DE-588)4442935-6 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009481445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009481445 |
Datensatz im Suchindex
_version_ | 1804128696336908288 |
---|---|
adam_text | IMAGE 1
EXPLORING ANALYTIC GEOMETRY
WITH MATHEMATICA
DONALD L. VOSSLER BME, KETTERING UNIVERSITY, 1978 MM, AQUINAS COLLEGE,
1981
ACADEMIC PRESS A HARCOURT SCIENCE AND TECHNOLOGY COMPANY SAN DIEGO SAN
FRANCISCO NEW YORK BOSTON
LONDON SYDNEY TOKYO
IMAGE 2
CONTENTS
I INTRODUCTION 1
1 GETTING STARTED 3
1.1 INTRODUCTION 3
1.2 HISTORICAL BACKGROUND 3
1.3 WHAT S ON THE CD-ROM 4
1.4 MATHEMATICA 5
1.5 STARTING DESCARTA2D 6
1.6 OUTLINE OF THE BOOK 7
2 DESCARTA2D TOUR 9
2.1 POINTS 9
2.2 EQUATIONS 10
2.3 LINES 12
2.4 LINE SEGMENTS 13
2.5 CIRCLES 14
2.6 ARES 15
2.7 TRIANGLES 16
2.8 PARABOLAS 17
2.9 ELLIPSES 18
2.10 HYPERBOLAS 19
2.11 TRANSFORMATIONS 20
2.12 AREA AND ARE LENGTH 20
2.13 TANGENT CURVES 21
2.14 SYMBOLIC PROOFS 22
2.15 NEXT STEPS 23
II ELEMENTARY GEOMETRY 25
3 COORDINATES AND POINTS 27
3.1 NUMBERS 27
3.2 RECTANGULAR COORDINATES 28
IX
IMAGE 3
X CONTENTS
3.3 LINE SEGMENTS AND DISTANCE 30
3.4 MIDPOINT BETWEEN TWO POINTS 33
3.5 POINT OF DIVISION OF TWO POINTS 33
3.6 COLLINEAR POINTS 36
3.7 EXPLORATION 37
4 EQUATIONS AND GRAPHS 39
4.1 VARIABLES AND FUNCTIONS 39
4.2 POLYNOMIALS 39
4.3 EQUATIONS 41
4.4 SOLVING EQUATIONS 42
4.5 GRAPHS 46
4.6 PARAMETRIC EQUATIONS 47
4.7 EXPLORATIONS 48
5 LINES AND LINE SEGMENTS 51
5.1 GENERAL EQUATION 51
5.2 PARALLEL AND PERPENDICULAR LINES 54
5.3 ANGLE BETWEEN LINES 55
5.4 TWO-POINT FORM 56
5.5 POINT-SLOPE FORM 58
5.6 SLOPE-INTERCEPT FORM 62
5.7 INTERCEPT FORM 64
5.8 NORMAL FORM 65
5.9 INTERSECTION POINT OF TWO LINES 69
5.10 POINT PROJECTED ONTO A LINE 70
5.11 LINE PERPENDICULAR TO LINE SEGMENT 72
5.12 ANGLE BISECTOR LINES 73
5.13 CONCURRENT LINES 74
5.14 PENCILS OF LINES 75
5.15 PARAMETRIC EQUATIONS 78
5.16 EXPLORATIONS 81
6 CIRCLES 85
6.1 DEFINITIONS AND STANDARD EQUATION 85
6.2 GENERAL EQUATION OF A CIRCLE 88
6.3 CIRCLE FROM DIAMETER 89
6.4 CIRCLE THROUGH THREE POINTS 90
6.5 INTERSECTION OF A LINE AND A CIRCLE 91
6.6 INTERSECTION OF TWO CIRCLES 92
6.7 DISTANCE FROM A POINT TO A CIRCLE 95
6.8 COAXIAL CIRCLES 96
6.9 RADICAL AXIS 97
6.10 PARAMETRIC EQUATIONS 99
IMAGE 4
CONTENTS
XI
6.11 EXPLORATIONS 101
7 ARES 105
7.1 DEFINITIONS 105
7.2 BULGE FACTOR ARE 107
7.3 THREE-POINT ARE 110
7.4 PARAMETRIC EQUATIONS 111
7.5 POINTS AND ANGLES AT PARAMETERS 112
7.6 ARES FROM RAY POINTS 113
7.7 EXPLORATIONS 114
8 TRIANGLES 117
8.1 DEFINITIONS 117
8.2 CENTROID OF A TRIANGLE 120
8.3 CIRCUMSCRIBED CIRCLE 122
8.4 INSCRIBED CIRCLE 123
8.5 SOLVING TRIANGLES 124
8.6 CEVIAN LENGTHS 128
8.7 EXPLORATIONS 128
III CONICS 133
9 PARABOLAS 135
9.1 DEFINITIONS 135
9.2 GENERAL EQUATION OF A PARABOLA 135
9.3 STANDARD FORMS OF A PARABOLA 136
9.4 REDUCTION TO STANDARD FORM 139
9.5 PARABOLA FROM FOCUS AND DIRECTRIX 140
9.6 PARAMETRIC EQUATIONS 141
9.7 EXPLORATIONS 142
10 ELLIPSES 145
10.1 DEFINITIONS 145
10.2 GENERAL EQUATION OF AN ELLIPSE 147
10.3 STANDARD FORMS OF AN ELLIPSE 147
10.4 REDUCTION TO STANDARD FORM 150
10.5 ELLIPSE FROM VERTICES AND ECCENTRICITY 151
10.6 ELLIPSE FROM FOCI AND ECCENTRICITY 153
10.7 ELLIPSE FROM FOCUS AND DIRECTRIX 153
10.8 PARAMETRIC EQUATIONS 155
10.9 EXPLORATIONS 156
I
IMAGE 5
1
XII CONTENTS
11 HYPERBOLAS 159
11.1 DEFINITIONS 159
11.2 GENERAL EQUATION OF A HYPERBOLA 161
11.3 STANDARD FORMS OF A HYPERBOLA 161
11.4 REDUCTION TO STANDARD FORM 166
11.5 HYPERBOLA FROM VERTICES AND ECCENTRICITY 167
11.6 HYPERBOLA FROM FOCI AND ECCENTRICITY 168
11.7 HYPERBOLA FROM FOCUS AND DIRECTRIX 169
11.8 PARAMETRIC EQUATIONS 170
11.9 EXPLORATIONS 173
12 GENERAL CONICS 175
12.1 CONIC FROM QUADRATIC EQUATION 175
12.2 CLASSIFICATION OF CONICS 184
12.3 CENTER POINT OF A CONIC 184
12.4 CONIC FROM POINT, LINE AND ECCENTRICITY 185
12.5 COMMON VERTEX EQUATION 186
12.6 CONIC INTERSECTIONS 189
12.7 EXPLORATIONS 190
13 CONIC ARES 193
13.1 DEFINITION OF A CONIC ARE 193
13.2 EQUATION OF A CONIC ARE 194
13.3 PROJECTIVE DISCRIMINANT 196
13.4 CONIC CHARACTERISTICS 196
13.5 PARAMETRIC EQUATIONS 198
13.6 EXPLORATIONS 199
14 MEDIAL CURVES 201
14.1 POINT-POINT 201
14.2 POINT-LINE 202
14.3 POINT-CIRCLE 204
14.4 LINE-LINE 206
14.5 LINE-CIRCLE 207
14.6 CIRCLE-CIRCLE 210
14.7 EXPLORATIONS 212
IV GEOMETRIE FUNCTIONS 215
15 TRANSFORMATIONS 217
15.1 TRANSLATIONS 217
15.2 ROTATIONS 219
15.3 SCALING 222
IMAGE 6
CONTENTS XIII
15.4 REFLECTIONS 224
15.5 EXPLORATIONS 226
16 ARE LENGTH 229
16.1 LINES AND LINE SEGMENTS 229
16.2 PERIMETER OF A TRIANGLE 230
16.3 POLYGONS APPROXIMATING CURVES 231
16.4 CIRCLES AND ARES 231
16.5 ELLIPSES AND HYPERBOLAS 233
16.6 PARABOLAS 234
16.7 CHORD PARAMETERS 235
16.8 SUMMARY OF ARE LENGTH FUNCTIONS 236
16.9 EXPLORATIONS 236
17 A R EA 237
17.1 AREAS OF GEOMETRIE FIGURES 237
17.2 CURVED AREAS 240
17.3 CIRCULAR AREAS 240
17.4 ELLIPTIC AREAS 242
17.5 HYPERBOLIC AREAS 245
17.6 PARABOLIC AREAS 246
17.7 CONIC ARE AREA 248
17.8 SUMMARY OF AREA FUNCTIONS 249
17.9 EXPLORATIONS 249
V TANGENT CURVES 253
18 TANGENT LINES 255
18.1 LINES TANGENT TO A CIRCLE 255
18.2 LINES TANGENT TO CONICS 266
18.3 LINES TANGENT TO STANDARD CONICS 273
18.4 EXPLORATIONS 280
19 TANGENT CIRCLES 283
19.1 TANGENT OBJECT, CENTER POINT 283
19.2 TANGENT OBJECT, CENTER ON OBJECT, RADIUS 285
19.3 TWO TANGENT OBJECTS, CENTER ON OBJECT 286
19.4 TWO TANGENT OBJECTS, RADIUS 287
19.5 THREE TANGENT OBJECTS 288
19.6 EXPLORATIONS 289
I
IMAGE 7
XIV CONTENTS
20 TANGENT CONICS 293
20.1 CONSTRAINT EQUATIONS 293
20.2 SYSTEMS OF QUADRATICS 294
20.3 VALIDITY CONDITIONS . 2 96
20.4 FIVE POINTS 296
20.5 FOUR POINTS, ONE TANGENT LINE 298
20.6 THREE POINTS, TWO TANGENT LINES 301
20.7 CONICS BY RECIPROCAL POLARS 306
20.8 EXPLORATIONS 310
21 BIARCS 311
21.1 BIARC CARRIER CIRCLES 311
21.2 KNOT POINT 314
21.3 KNOT CIRCLES 316
21.4 BIARC PROGRAMMING EXAMPLES 317
21.5 EXPLORATIONS 322
VI REFERENCE 323
22 TECHNICAL N O T ES 325
22.1 COMPUTATION LEVELS 325
22.2 NAMES 326
22.3 DESCARTA2D OBJECTS 326
22.4 DESCARTA2D PACKAGES 337
22.5 DESCARTA2D FUNCTIONS 338
22.6 DESCARTA2D DOCUMENTATION 339
23 COMMAND BROWSER 341
24 ERROR MESSAGES 367
VII PACKAGES 385
D2DARC2D 387
D2DARCLENGTH2D 395
D2DAREA2D 399
D2DCIRCLE2D 405
D2DCONIC2D 411
D2DCONICARC2D 415
D2DELLIPSE2D 421
D2DEQUATIONS2D 427
D2DEXPRESSIONS2D 429
D2DGEOMETRY2D 437
IMAGE 8
CONTENTS XV
D2DHYPERBOLA2D 445
D2DINTERSECT2D 453
D2DLINE2D 457
D2DLOCI2D 465
D2DMASTER2D 469
D2DMEDIAL2D 473
D2DNUMBERS2D 477
D2DPARABOLA2D 479
D2DPENCIL2D 485
D2DPOINT2D 489
D2DQUADRATIC2D 497
D2DSEGMENT2D 505
D2DSKETCH2D 511
D2DSOLVE2D 515
D2DTANGENTCIRCLES2D 519
D2DTANGENTCONICS2D 523
D2DTANGENTLINES2D 531
D2DTANGENTPOINTS2D 537
D2DTRANSFORM2D 539
D2DTRIANGLE2D 545
VIII EXPLORATIONS 555
APOLLON. NB, CIRCLE OF APOLLONIUS 557
A R C C E N T. NB, CENTROID OF SEMICIRCULAR ARE 559
A R C E N T R Y . N B, ARE FROM BOUNDING POINTS AND ENTRY DIRECTION 561
A R C E X I T. NB, ARE FROM BOUNDING POINTS AND EXIT DIRECTION 563
ARCHIMED.NB, ARCHIMEDES CIRCLES 565
AREMIDPT. NB, MIDPOINT OF AN ARE 567
C A A R C L E N. NB, ARE LENGTH OF A PARABOLIC CONIC ARE 569
C A A R E A L. NB, AREA OF A CONIC ARE (GENERAL) 571
CAAREA2. NB, AREA OF A CONIC ARE (PARABOLA) 573
CACENTER.NB, CENTER OF A CONIC ARE 575
C A C I R C L E . N B, CIRCULAR CONIC ARE 577
CAMEDIAN.NB, SHOULDER POINT ON MEDIAN 579
CAPARAM.NB, PARAMETRIE EQUATIONS OF A CONIC ARE 581
C A R L Y L E. NB, CARLYLE CIRCLE 583
C A S T I L L . N B, CASTILLON S PROBLEM 585
CATNLN.NB, TANGENT LINE AT SHOULDER POINT 589
CENTER.NB, CENTER OF A QUADRATIC 591
CHDLEN.NB, CHORD LENGTH OF INTERSECTING CIRCLES 593
C I R 3 P T S . N B, CIRCLE THROUGH THREE POINTS 595
C I R C A R E A . N B, ONE-THIRD OF A CIRCLE S AREA 597
I
IMAGE 9
XVI CONTENTS
CIRPTMID.NB, CIRCLE-POINT MIDPOINT THEOREM 599
CRAMER2.NB, CRAMER S RULE (TWO EQUATIONS) 601
CRAMER3. NB, CRAMER S RULE (THREE EQUATIONS) 603
D E T E R . N B, DETERMINANTS 605
ELF OCDIR.NB, FOCUS OF ELLIPSE IS POLE OFDIRECTRIX 607
ELIMLIN.NB, ELIMINATE LINEAR TERMS 609
ELIMXYL.NB, ELIMINATE CROSS-TERM BY ROTATION 611
ELIMXY2. NB, ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES 613
ELIMXY3.NB, ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES 615
E L L D I S T . N B, ELLIPSE LOCUS, DISTANCE FROM TWO LINES 617
E L L F D . N B, ELLIPSE FROM FOCUS AND DIRECTRIX 619
E L L I P S 2 A . N B, SUM OFFOCAL DISTANCES OF AN ELLIPSE 623
E L L L E N . N B, LENGTH OF ELLIPSE FOCAL CHORD 625
E L L R A D . N B, APOAPSIS AND PERIAPSIS OF AN ELLIPSE 627
ELLSIM.NB, SIMILAR ELLIPSES 629
E L L S L P . N B, TANGENT TO AN ELLIPSE WITH SLOPE 631
EQAREA.NB, EQUAL AREAS POINT 633
EYEBALL.NB, EYEBALL THEOREM 637
GERGONNE. NB, GERGONNE POINT OF A TRIANGLE 639
HERON.NB, HERON S FORMULA 641
HYP2A.NB, FOCAL DISTANCES OF A HYPERBOLA 643
HYP4PTS. NB, EQUILATERAL HYPERBOLAS 645
HYPAREA.NB, AREAS RELATED TO HYPERBOLAS 647
HYPECCEN.NB, ECCENTRICITIES OFCONJUGATE HYPERBOLAS 651
HYPFD.NB, HYPERBOLA FROM FOCUS AND DIRECTRIX 653
HYPINV.NB, RECTANGULAR HYPERBOLA DISTANCES 657
HYPLEN.NB, LENGTH OF HYPERBOLA FOCAL CHORD 659
HYPSLP.NB, TANGENT TO A HYPERBOLA WITH GIVEN SLOPE 661
H Y P T R I G. NB, TRIGONOMETRIE PARAMETRIC EQUATIONS 663
I N T R S E T. NB, INTERSECTION OF LINES IN INTERCEPT FORM 665
INVERSE.NB, INVERSION 667
JOHNSON.NB, JOHNSON S CONGRUENT CIRCLE THEOREM 671
KNOTIN.NB, INCENTER ON KNOT CIRCLE 675
L N D E T . N B, LINE GENERAL EQUATION DETERMINANT 677
L N D I S T . N B, VERTICAL/HORIZONTAL DISTANCE TO A LINE 679
L N L N D I S T . N B, LINE SEGMENT CUT BY TWO LINES 681
LNQUAD.NB, LINE NORMAL TO A QUADRATIC 685
L N S D S T. NB, DISTANCE BETWEEN PARALLEL LINES 687
I N S E G I N T . N B, INTERSECTION PARAMETERS OF TWO LINE SEGMENTS 689
L N S E G P T . N B, INTERSECTION POINT OF TWO LINE SEGMENTS 691
LNSPERP.NB, EQUATIONS OF PERPENDICULAR LINES 693
L N T A N C I R . N B, LINE TANGENT TO A CIRCLE 695
LNTANCON.NB, LINE TANGENT TO A CONIC 697
IMAGE 10
CONTENTS
XVII
M D C I R C I R . N B, MEDIAL CURVE, CIRCLE-CIRCLE 699
MDLNCIR.NB, MEDIAL CURVE, LINE-CIRCLE 703
MDLNLN.NB, MEDIAL CURVE, LINE-LINE 705
MDPTCIR.NB, MEDIAL CURVE, POINT-CIRCLE 707
MDPTLN.NB, MEDIAL CURVE, POINT-LINE 711
MDPTPT.NB, MEDIAL CURVE, POINT-POINT 713
MDTYPE.NB, MEDIAL CURVE TYPE 715
MONGE. NB, MONGE S THEOREM 717
N A R C L E N. NB, APPROXIMATE ARE LENGTH OF A CURVE 719
NORMAL.NB, NORMALS AND MINIMUM DISTANCE 721
PB3PTS.NB, PARABOLA THROUGH THREE POINTS 723
PB4PTS.NB, PARABOLA THROUGH FOUR POINTS 725
PBANG.NB, PARABOLA INTERSECTION ANGLE 727
PBARCH.NB, PARABOLIC ARCH 729
PBARCLEN.NB, ARE LENGTH OF A PARABOLA 731
PBDET. NB, PARABOLA DETERMINANT 733
PBFOCCHD.NB, LENGTH OF PARABOLA FOCAL CHORD 735
PBSLP.NB, TANGENT TO A PARABOLA WITH A GIVEN SLOPE 737
P B T A N C I R . N B, CIRCLE TANGENT TO A PARABOLA 739
PBTNLNS.NB, PERPENDICULAR TANGENTS TO A PARABOLA 743
P O L A R C I R . N B, POLAR EQUATION OFA CIRCLE 745
P O L A R C O L. NB, COLLINEAR POLAR COORDINATES 747
POLARCON. NB, POLAR EQUATION OF A CONIC 749
P O L A R D I S . N B, DISTANCE USING POLAR COORDINATES 751
P O L A R E L L . N B, POLAR EQUATION OF AN ELLIPSE 753
POLAREQN.NB, POLAR EQUATIONS 755
POLARHYP. NB, POLAR EQUATION OF A HYPERBOLA 757
POLARPB. NB, POLAR EQUATION OF A PARABOLA 759
POLARUNQ.NB, NON-UNIQUENESS OF POLAR COORDINATES 761
PQUAD.NB, PARAMETERIZATION OF A QUADRATIC 763
P T S C O L . N B, COLLINEAR POINTS 765
RADAXIS.NB, RADICAL AXIS OF TWO CIRCLES 767
R A D C N T R . N B, RADICAL CENTER 769
R A R A T I O . N B, RADICAL AXIS RATIO 771
R E C C I R . N B, RECIPROCAL OF A CIRCLE 773
R E C P T L N . N B, RECIPROCALS OF POINTS AND LINES 775
RECQUAD.NB, RECIPROCAL OF A QUADRATIC 777
R E F L C T P T . N B, REFLECTION IN A POINT 779
R T A N G C I R . N B, ANGLE INSCRIBED IN A SEMICIRCLE 781
R T T R I C I R . N B, CIRCLE INSCRIBED IN A RIGHT TRIANGLE 783
SHOULDER.NB, COORDINATES OF SHOULDER POINT 785
STEWART. NB, STEWART S THEOREM 787
T A N C I R L . N B, CIRCLE TANGENT TO CIRCLE, GIVEN CENTER 789
T.
IMAGE 11
XVIII CONTENTS
T A N C I R 2 . N B, CIRCLE TANGENT TO CIRCLE, CENTER ON CIRCLE, RADIUS
791
T A N C I R 3 . N B, CIRCLE TANGENT TO TWO LINES, RADIUS 793
T A N C I R 4 . N B, CIRCLE THROUGH TWO POINTS, CENTER ON CIRCLE 795
T A N C I R 5 . N B, CIRCLE TANGENT TO THREE LINES 797
T A N C I R P T . N B, TANGENCY POINT ON A CIRCLE 799
T E T R A . N B, AREA OF A TETRAHEDRON S BASE 801
T N C I R T R I . N B, CIRCLES TANGENT TO AN ISOSCELES TRIANGLE 803
T N L N C I R. NB, CONSTRUCTION OF TWO RELATED CIRCLES 807
T R I A L L E N . N B, TRIANGLE ALTITUDE LENGTH 809
T R I A L T . N B, ALTITUDE OF A TRIANGLE 811
TRIAREA.NB, AREA OF TRIANGLE CONFIGURATIONS 813
TRIARINS.NB, AREA OF TRIANGLE BOUNDED BY LINES 815
TRICENT.NB, CENTROID OF A TRIANGLE 817
TRICEV.NB, TRIANGLE CEVIAN LENGTHS 819
TRICONN.NB, CONCURRENT TRIANGLE ALTITUDES 823
TRIDIST.NB, HYPOTENUSE MIDPOINT DISTANCE 827
TRIEULER.NB, EULER S TRIANGLE FORMULA 829
TRIRAD.NB, TRIANGLE RADII 833
TRISIDES.NB, TRIANGLE SIDE LENGTHS FROM ALTITUDES 835
IX EPILOGUE 837
INSTALLATION INSTRUCTIONS 839
BIBLIOGRAPHY 843
INDEX 845
|
any_adam_object | 1 |
author | Vossler, Donald L. |
author_facet | Vossler, Donald L. |
author_role | aut |
author_sort | Vossler, Donald L. |
author_variant | d l v dl dlv |
building | Verbundindex |
bvnumber | BV013862191 |
callnumber-first | Q - Science |
callnumber-label | QA551 |
callnumber-raw | QA551.5 |
callnumber-search | QA551.5 |
callnumber-sort | QA 3551.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 601 |
classification_tum | DAT 306f MAT 516f |
ctrlnum | (OCoLC)44469214 (DE-599)BVBBV013862191 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01762nam a2200469 c 4500</leader><controlfield tag="001">BV013862191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010810s2000 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0127282556</subfield><subfield code="9">0-12-728255-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44469214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013862191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA551.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 306f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 516f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vossler, Donald L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring analytic geometry with Mathematica</subfield><subfield code="c">Donald L. Vossler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 865 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">CD-ROM ; 12 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Mathematica (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica 4.0</subfield><subfield code="0">(DE-588)4594933-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica 3.0</subfield><subfield code="0">(DE-588)4442935-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematica 4.0</subfield><subfield code="0">(DE-588)4594933-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematica 3.0</subfield><subfield code="0">(DE-588)4442935-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009481445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009481445</subfield></datafield></record></collection> |
id | DE-604.BV013862191 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:53:21Z |
institution | BVB |
isbn | 0127282556 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009481445 |
oclc_num | 44469214 |
open_access_boolean | |
owner | DE-634 DE-91G DE-BY-TUM |
owner_facet | DE-634 DE-91G DE-BY-TUM |
physical | XVIII, 865 S. graph. Darst. CD-ROM ; 12 cm |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Acad. Press |
record_format | marc |
spelling | Vossler, Donald L. Verfasser aut Exploring analytic geometry with Mathematica Donald L. Vossler San Diego [u.a.] Acad. Press 2000 XVIII, 865 S. graph. Darst. CD-ROM ; 12 cm txt rdacontent n rdamedia nc rdacarrier Mathematica (Computer file) Datenverarbeitung Geometry, Analytic Data processing Mathematica 4.0 (DE-588)4594933-5 gnd rswk-swf Mathematica 3.0 (DE-588)4442935-6 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 s Mathematica 4.0 (DE-588)4594933-5 s DE-604 Mathematica 3.0 (DE-588)4442935-6 s GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009481445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vossler, Donald L. Exploring analytic geometry with Mathematica Mathematica (Computer file) Datenverarbeitung Geometry, Analytic Data processing Mathematica 4.0 (DE-588)4594933-5 gnd Mathematica 3.0 (DE-588)4442935-6 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
subject_GND | (DE-588)4594933-5 (DE-588)4442935-6 (DE-588)4001867-2 |
title | Exploring analytic geometry with Mathematica |
title_auth | Exploring analytic geometry with Mathematica |
title_exact_search | Exploring analytic geometry with Mathematica |
title_full | Exploring analytic geometry with Mathematica Donald L. Vossler |
title_fullStr | Exploring analytic geometry with Mathematica Donald L. Vossler |
title_full_unstemmed | Exploring analytic geometry with Mathematica Donald L. Vossler |
title_short | Exploring analytic geometry with Mathematica |
title_sort | exploring analytic geometry with mathematica |
topic | Mathematica (Computer file) Datenverarbeitung Geometry, Analytic Data processing Mathematica 4.0 (DE-588)4594933-5 gnd Mathematica 3.0 (DE-588)4442935-6 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
topic_facet | Mathematica (Computer file) Datenverarbeitung Geometry, Analytic Data processing Mathematica 4.0 Mathematica 3.0 Analytische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009481445&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vosslerdonaldl exploringanalyticgeometrywithmathematica |