Geometrization of 3-orbifolds of cyclic type:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Soc. Math. de France
2001
|
Schriftenreihe: | Astérisque
272 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 208 S. graph. Darst. |
ISBN: | 2856291007 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013859910 | ||
003 | DE-604 | ||
005 | 20190604 | ||
007 | t | ||
008 | 010808s2001 fr d||| |||| 00||| eng d | ||
020 | |a 2856291007 |9 2-85629-100-7 | ||
035 | |a (OCoLC)248253159 | ||
035 | |a (DE-599)BVBBV013859910 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a fr |c FR | ||
049 | |a DE-824 |a DE-29T |a DE-384 |a DE-19 |a DE-91G |a DE-355 |a DE-83 | ||
050 | 0 | |a QA613.2 | |
082 | 0 | |a 514/.3 |2 21 | |
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
084 | |a 57M50 |2 msc | ||
084 | |a 53C20 |2 msc | ||
084 | |a 57M60 |2 msc | ||
100 | 1 | |a Boileau, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometrization of 3-orbifolds of cyclic type |c Michel Boileau and Joan Porti |
264 | 1 | |a Paris |b Soc. Math. de France |c 2001 | |
300 | |a VI, 208 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 272 | |
650 | 7 | |a Differentiaalmeetkunde |2 gtt | |
650 | 7 | |a Topologische ruimten |2 gtt | |
650 | 4 | |a Variétés à 3 dimensions | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Orbifolds | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orbifaltigkeit |0 (DE-588)4667606-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Orbifaltigkeit |0 (DE-588)4667606-5 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Porti, Joan |d 1967- |e Verfasser |0 (DE-588)173132189 |4 aut | |
830 | 0 | |a Astérisque |v 272 |w (DE-604)BV002579439 |9 272 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009479372&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009479372 |
Datensatz im Suchindex
_version_ | 1804128693411381248 |
---|---|
adam_text | Titel: Geometrization of 3-orbifolds of cyclic type
Autor: Boileau, Michel
Jahr: 2001
CONTENTS
Introduction .................................................................. 1
1. Cone Manifolds .......................................................... 9
1.1. Basic Definitions ........................................................ 9
1.2. Sequences of hyperbolic cone 3-manifolds ............................................................11
2. Proof of Thurston s orbifold theorem for very good 3-orbifolds .... 15
2.1. Generalized Hyperbolic Dehn Filling ........................................................................15
2.2. The space of hyperbolic cone structures ................................................................16
2.3. Proof of Theorem 4 from Theorems A and B ........................................................19
2.4. Proof of Theorem 1 ........................................................................................................23
3. A compactness theorem for cone 3-manifolds
with cone angles bounded above by 7r ................................................................33
3.1. The Dirichlet polyhedron ............................................................................................34
3.2. Hausdorff-Gromov convergence for cone 3-manifolds ........................................39
3.3. Hausdorff-Gromov convergence implies geometric convergence....................41
3.4. Uniform lower bound for the cone-injectivity radius ........................................47
3.5. Some properties of geometric convergence ............................................................54
3.6. Cone 3-manifolds with totally geodesic boundary ............................................56
4. Local soul theorem for cone 3-manifolds
with cone angles less than or equal to 7r ............................................................61
4.1. Thurston s classification theorem of non-compact Euclidean
cone 3-manifolds ................................................................................................................63
4.2. Totally s-convex subsets in Euclidean cone 3-manifolds..................................65
4.3. Proof of the soul theorem ............................................................................................72
4.4. Proof of the local soul theorem..................................................................................75
4.5. Local soul theorem for cone 3-manifolds with boundary ................................77
5. Sequences of closed hyperbolic cone 3-manifolds
with cone angles less than 7r ........................................................................................79
5.1. The non-collapsing case ................................................................................................80
5.2. The collapsing case ..............................................................................................84
CONTENTS
5.3. Coverings a la Gromov ....................................................................................................86
5.4. From (e, £ )-Margulis coverings of abelian type to //-coverings
a la Gromov ........................................................................................................................63
5.5. (e, D)-Margulis neighborhood of thick turnover type ....................................98
6. Very good orbifolds and sequences of hyperbolic cone 3-manifolds .. 103
6.1. The non-collapsing case ................................................193
6.2. The collapsing case ......................................................196
6.3. From (e, D)-Margulis coverings of type a) and b) to //-coverings a la
Gromov ................................................................112
7. Uniformization of small 3-orbifolds ....................................119
7.1. Desingularization of ramified circle components ........................120
7.2. Uniformization of small 3-orbifolds with non-empty boundary ..........122
7.3. The sequence does not collapse ..........................................124
8. Haken 3-orbifolds ........................................................131
8.1. Proof of Thurston s Orbifold theorem ..................................132
8.2. Fundamental results on Haken 3-orbifolds ..............................132
8.3. Kleinian groups ........................................................136
8.4. Thurston s gluing theorem ..............................................140
8.5. Thurston s Fixed Point Theorem ........................................144
8.6. Thurston s Mirror Trick ................................................147
9. Examples ..................................................................159
9.1. A Euclidean collapse at angle ^ ........................................160
9.2. Another Euclidean collapse before 7r ....................................160
9.3. A Euclidean collapse at angle 7r ........................................161
9.4. Collapses at angle tt for Seifert fibred geometries ........................162
9.5. A collapse at 7r for Sol geometry ........................................164
9.6. An essential Euclidean turnover : opening of a cusp ....................166
9.7. A pillow ................................................................169
9.8. An incompressible RP2(7r, 7t) ............................................171
A. Limit of Hyperbolicity for Spherical 3-Orbifolds,
by Michael Heusener and Joan Porti ........................................173
A.l. Proof of the main proposition ..........................................175
B. Thurston s hyperbolic Delin filling Theorem ........................179
B.l. The manifold case ......................................................179
B.2. The orbifold case ......................................................187
B.3. Dehn filling with totally geodesic turnovers on the boundary..........194
Bibliography .....................
Index ..........................................................................207
ASTCRISQUIO 272
|
any_adam_object | 1 |
author | Boileau, Michel Porti, Joan 1967- |
author_GND | (DE-588)173132189 |
author_facet | Boileau, Michel Porti, Joan 1967- |
author_role | aut aut |
author_sort | Boileau, Michel |
author_variant | m b mb j p jp |
building | Verbundindex |
bvnumber | BV013859910 |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.2 |
callnumber-search | QA613.2 |
callnumber-sort | QA 3613.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)248253159 (DE-599)BVBBV013859910 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01876nam a2200517 cb4500</leader><controlfield tag="001">BV013859910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190604 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010808s2001 fr d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2856291007</subfield><subfield code="9">2-85629-100-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248253159</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013859910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">fr</subfield><subfield code="c">FR</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boileau, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrization of 3-orbifolds of cyclic type</subfield><subfield code="c">Michel Boileau and Joan Porti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Soc. Math. de France</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 208 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">272</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiaalmeetkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologische ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés à 3 dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orbifaltigkeit</subfield><subfield code="0">(DE-588)4667606-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Orbifaltigkeit</subfield><subfield code="0">(DE-588)4667606-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porti, Joan</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173132189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">272</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">272</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009479372&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009479372</subfield></datafield></record></collection> |
id | DE-604.BV013859910 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:53:18Z |
institution | BVB |
isbn | 2856291007 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009479372 |
oclc_num | 248253159 |
open_access_boolean | |
owner | DE-824 DE-29T DE-384 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-824 DE-29T DE-384 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-83 |
physical | VI, 208 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Soc. Math. de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Boileau, Michel Verfasser aut Geometrization of 3-orbifolds of cyclic type Michel Boileau and Joan Porti Paris Soc. Math. de France 2001 VI, 208 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Astérisque 272 Differentiaalmeetkunde gtt Topologische ruimten gtt Variétés à 3 dimensions Geometry, Differential Orbifolds Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd rswk-swf Orbifaltigkeit (DE-588)4667606-5 gnd rswk-swf Orbifaltigkeit (DE-588)4667606-5 s Dimension 3 (DE-588)4321722-9 s DE-604 Porti, Joan 1967- Verfasser (DE-588)173132189 aut Astérisque 272 (DE-604)BV002579439 272 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009479372&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Boileau, Michel Porti, Joan 1967- Geometrization of 3-orbifolds of cyclic type Astérisque Differentiaalmeetkunde gtt Topologische ruimten gtt Variétés à 3 dimensions Geometry, Differential Orbifolds Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd Orbifaltigkeit (DE-588)4667606-5 gnd |
subject_GND | (DE-588)4321722-9 (DE-588)4667606-5 |
title | Geometrization of 3-orbifolds of cyclic type |
title_auth | Geometrization of 3-orbifolds of cyclic type |
title_exact_search | Geometrization of 3-orbifolds of cyclic type |
title_full | Geometrization of 3-orbifolds of cyclic type Michel Boileau and Joan Porti |
title_fullStr | Geometrization of 3-orbifolds of cyclic type Michel Boileau and Joan Porti |
title_full_unstemmed | Geometrization of 3-orbifolds of cyclic type Michel Boileau and Joan Porti |
title_short | Geometrization of 3-orbifolds of cyclic type |
title_sort | geometrization of 3 orbifolds of cyclic type |
topic | Differentiaalmeetkunde gtt Topologische ruimten gtt Variétés à 3 dimensions Geometry, Differential Orbifolds Three-manifolds (Topology) Dimension 3 (DE-588)4321722-9 gnd Orbifaltigkeit (DE-588)4667606-5 gnd |
topic_facet | Differentiaalmeetkunde Topologische ruimten Variétés à 3 dimensions Geometry, Differential Orbifolds Three-manifolds (Topology) Dimension 3 Orbifaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009479372&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT boileaumichel geometrizationof3orbifoldsofcyclictype AT portijoan geometrizationof3orbifoldsofcyclictype |