Non-semisimple topological quantum field theories for 3-manifolds with corners:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London
Springer
2001
|
Schriftenreihe: | Lecture notes in mathematics
1765 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 379 S. graph. Darst. |
ISBN: | 3540424164 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013851733 | ||
003 | DE-604 | ||
005 | 20011108 | ||
007 | t | ||
008 | 010731s2001 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 962006939 |2 DE-101 | |
020 | |a 3540424164 |9 3-540-42416-4 | ||
035 | |a (OCoLC)248219968 | ||
035 | |a (DE-599)BVBBV013851733 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-824 |a DE-355 |a DE-19 |a DE-706 |a DE-634 |a DE-83 |a DE-11 |a DE-188 |a DE-29T | ||
050 | 0 | |a QA3 | |
050 | 0 | |a QC174.45 | |
082 | 0 | |a 510 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 81T05 |2 msc | ||
084 | |a 18D05 |2 msc | ||
084 | |a MAT 620f |2 stub | ||
084 | |a PHY 023f |2 stub | ||
084 | |a 57N10 |2 msc | ||
100 | 1 | |a Kerler, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-semisimple topological quantum field theories for 3-manifolds with corners |c Thomas Kerler ; Volodymyr V. Lyubashenko |
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London |b Springer |c 2001 | |
300 | |a VI, 379 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1765 | |
650 | 4 | |a Topologische Quantenfeldtheorie - Kategorientheorie | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |D s |
689 | 0 | 1 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ljubašenko, Volodymyr |d 1959- |e Verfasser |0 (DE-588)123063124 |4 aut | |
830 | 0 | |a Lecture notes in mathematics |v 1765 |w (DE-604)BV000676446 |9 1765 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009475352&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009475352 |
Datensatz im Suchindex
_version_ | 1804128686994096128 |
---|---|
adam_text | Contents
0. Introduction and Summary of Results 1
0.1 Atiyah s TQFT Axioms via Categories 1
0.2 Double Categories 3
0.3 Extended TQFT s 6
0.4 Statement of Main Result on the Class of Extended TQFT s 8
1. The Double Category of Framed, Relative 3 Cobordisms 15
1.1 The 0 1 Arrow Category of Surfaces with Boundaries 18
1.2 2 Arrows from Cobordisms with Corners 23
1.3 Basic Consequences of the Double Category Picture 27
1.4 Mapping Class Groups, Framed Braid Groups, and Balancing 35
1.5 Some Facts about Handle Decompositions 51
1.6 The Central Extension i?4 Cob + Cob 68
2. Tangle Categories and Presentation of Cobordisms 97
2.1 Local Ingredients of Tangle Diagrams and Horizontal 1 Arrows ... 99
2.2 Admissible Tangles and Vertical 1 Arrows 104
2.3 Equivalence Moves of Tangles, and the 2 Arrows in Tgl 109
2.4 Tangles in Three Space 116
2.5 Alternative Calculi and Further Equivalences 143
2.6 Compositions and Tgl as a Double Category 153
2.7 Special Cases and Applications 166
3. Isomorphism between Tangle and Cobordism Categories 173
3.1 Trading and Eliminating Handles 175
3.2 Stratified Function Spaces and External Strands onW 187
3.3 From Tangle Classes to Cobordism Classes 199
3.4 Verification of Compositions 207
4. Monoidal categories and monoidal 2 categories 217
4.1 Ribbon monoidal categories 217
4.2 Hopf algebras in braided categories 226
4.3 Abelian categories form a monoidal 2 category 242
VI Contents
5. Coends and construction of Hopf algebras 261
5.1 Thecoend 261
5.2 Braided function algebra 270
6. Construction of TQFT Double Functors 283
6.1 Main result 283
6.2 Colorations, Natural Transformations, and Liftings 284
6.3 Topological Invariance 290
6.4 Compositions over Colored Surfaces 292
6.5 Lifting V(M) to Color Independent Natural Transformation 294
6.6 Horizontal Compositions 299
6.7 Topological moves imply the modularity 304
7. Generalization of a modular functor 313
7.1 Enhanced cobordism categories 313
7.2 Formulation of TQFT as a double functor in the extended case 315
7.3 Sketch of the construction of enhanced TQFT 315
7.4 Examples 320
A. From Quantum Field Theory to Axiomatics 335
A.I Witten Chern Simons Theory and Conformal Field Theory 335
A.2 Developing the Axiomatics for Extended TQFT s 338
A.3 Generalized TQFT s in Gauge Theory 341
B. Double Categories and Double Functors 343
B.I Double Categories 343
B.2 Double pseudofunctors 345
C. Thick tangles 353
C.I Monoidal bicategory of thick tangles 353
C.2 Representation of thick tangles by abelian categories 365
Index 377
|
any_adam_object | 1 |
author | Kerler, Thomas Ljubašenko, Volodymyr 1959- |
author_GND | (DE-588)123063124 |
author_facet | Kerler, Thomas Ljubašenko, Volodymyr 1959- |
author_role | aut aut |
author_sort | Kerler, Thomas |
author_variant | t k tk v l vl |
building | Verbundindex |
bvnumber | BV013851733 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 QC174.45 |
callnumber-search | QA3 QC174.45 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 350 |
classification_tum | MAT 620f PHY 023f |
ctrlnum | (OCoLC)248219968 (DE-599)BVBBV013851733 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02224nam a22005658cb4500</leader><controlfield tag="001">BV013851733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010731s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">962006939</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540424164</subfield><subfield code="9">3-540-42416-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248219968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013851733</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.45</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81T05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">18D05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57N10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kerler, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-semisimple topological quantum field theories for 3-manifolds with corners</subfield><subfield code="c">Thomas Kerler ; Volodymyr V. Lyubashenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 379 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1765</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologische Quantenfeldtheorie - Kategorientheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ljubašenko, Volodymyr</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123063124</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1765</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1765</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009475352&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009475352</subfield></datafield></record></collection> |
id | DE-604.BV013851733 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:53:12Z |
institution | BVB |
isbn | 3540424164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009475352 |
oclc_num | 248219968 |
open_access_boolean | |
owner | DE-739 DE-824 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 DE-29T |
owner_facet | DE-739 DE-824 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 DE-29T |
physical | VI, 379 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Kerler, Thomas Verfasser aut Non-semisimple topological quantum field theories for 3-manifolds with corners Thomas Kerler ; Volodymyr V. Lyubashenko Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London Springer 2001 VI, 379 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1765 Topologische Quantenfeldtheorie - Kategorientheorie Mathematische Physik Mathematical physics Quantum field theory Three-manifolds (Topology) Kategorientheorie (DE-588)4120552-2 gnd rswk-swf Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd rswk-swf Topologische Quantenfeldtheorie (DE-588)4426450-1 s Kategorientheorie (DE-588)4120552-2 s DE-604 Ljubašenko, Volodymyr 1959- Verfasser (DE-588)123063124 aut Lecture notes in mathematics 1765 (DE-604)BV000676446 1765 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009475352&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kerler, Thomas Ljubašenko, Volodymyr 1959- Non-semisimple topological quantum field theories for 3-manifolds with corners Lecture notes in mathematics Topologische Quantenfeldtheorie - Kategorientheorie Mathematische Physik Mathematical physics Quantum field theory Three-manifolds (Topology) Kategorientheorie (DE-588)4120552-2 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd |
subject_GND | (DE-588)4120552-2 (DE-588)4426450-1 |
title | Non-semisimple topological quantum field theories for 3-manifolds with corners |
title_auth | Non-semisimple topological quantum field theories for 3-manifolds with corners |
title_exact_search | Non-semisimple topological quantum field theories for 3-manifolds with corners |
title_full | Non-semisimple topological quantum field theories for 3-manifolds with corners Thomas Kerler ; Volodymyr V. Lyubashenko |
title_fullStr | Non-semisimple topological quantum field theories for 3-manifolds with corners Thomas Kerler ; Volodymyr V. Lyubashenko |
title_full_unstemmed | Non-semisimple topological quantum field theories for 3-manifolds with corners Thomas Kerler ; Volodymyr V. Lyubashenko |
title_short | Non-semisimple topological quantum field theories for 3-manifolds with corners |
title_sort | non semisimple topological quantum field theories for 3 manifolds with corners |
topic | Topologische Quantenfeldtheorie - Kategorientheorie Mathematische Physik Mathematical physics Quantum field theory Three-manifolds (Topology) Kategorientheorie (DE-588)4120552-2 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd |
topic_facet | Topologische Quantenfeldtheorie - Kategorientheorie Mathematische Physik Mathematical physics Quantum field theory Three-manifolds (Topology) Kategorientheorie Topologische Quantenfeldtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009475352&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT kerlerthomas nonsemisimpletopologicalquantumfieldtheoriesfor3manifoldswithcorners AT ljubasenkovolodymyr nonsemisimpletopologicalquantumfieldtheoriesfor3manifoldswithcorners |