Biopolymers: 10 General aspects and special applications
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
Wiley-VCH
2003
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 516 S. Ill., graph. Darst. |
ISBN: | 3527302298 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV013846292 | ||
003 | DE-604 | ||
005 | 20030303 | ||
007 | t | ||
008 | 010801s2003 ad|| |||| 00||| eng d | ||
020 | |a 3527302298 |9 3-527-30229-8 | ||
035 | |a (OCoLC)314004884 | ||
035 | |a (DE-599)BVBBV013846292 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-355 |a DE-92 |a DE-91G |a DE-703 |a DE-1102 |a DE-11 | ||
245 | 1 | 0 | |a Biopolymers |n 10 |p General aspects and special applications |c ed. by A. Steinbüchel |
264 | 1 | |a Weinheim [u.a.] |b Wiley-VCH |c 2003 | |
300 | |a X, 516 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Steinbüchel, Alexander |e Sonstige |0 (DE-588)110816943 |4 oth | |
700 | 1 | |a Doi, Yoshiharu |e Sonstige |4 oth | |
700 | 1 | |a Vandamme, Erick J. |e Sonstige |0 (DE-588)1095130498 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV013746142 |g 10 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009470556&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009470556 |
Datensatz im Suchindex
_version_ | 1804128679577518080 |
---|---|
adam_text | Contents
1 Applications of Natural Fiber Composites for Constructive Parts in
Aerospace, Automobiles, and Other Areas 1
Ulrich Riedel, Jörg Nickel
2 Applications of Biopolymers in Construction Engineering 29
Johann Plank
3 Microbial Deterioration of Synthetic and Biological Polymers Used in
Engineering and Construction 97
Ji-Dong Gu
4 Applications of Polyphosphate and other Biopolymers in Wastewater Treatrnent 139
Akio Kuroda, Hisao Ohtake
5 Mater-Bi: Biodegradable Material for Various Applications 159
Catia Bastioli
6 Chemical Modification of Synthetic and Biosynthetic Polyesters 181
Baki Hazer
7 Biofilms 209
Hans-Curt Flemming, Jost Wingender
8 Health Issues of Biopolymers: Polyhydroxybutyrate 247
Thomas Freier, Katrin Sternberg, Detlef Behrend, Klaus-Peter Schmitz
9 Biotechnological Processes for the Production of Monomers for Subsequent
Chemical Polymer Synthesis 281
Sang Yup Lee, Si Jae Park, Young Lee, Seung Hwan Lee
10 Economic Aspects of Biopolymer Production 307
Sang Yup Lee, Si Jae Park, Jong Pil Park, Young Lee, Seung Hwan Lee
11 Sustainability, Agro-resources and Technology in the Polymer Industry 339
Sietze Vellema, Robert van Tuil, Gerrit Eggink
12 Biodegradability of Polymers: Regulations and Methods for Testing 365
Rolf-Joachim Müller
X Contents
13 Evaluation and Certification of Compostable Polymeric Materials and Products 393
Maarten van der Zee
14 Life-cycle Assessment of Bio-based Polymers and Narural Fiber Composites 409
Martin Patel, Catia Bastioli, Luigi Marini, Eduard Würdinger
15 Biodegradable Plastics in the Social and Political Environment 453
Ingo Sartorius
16 Evaluating the Environmental Impact of Biopolymers 473
Steven Slater, David Glassner, Erwin Vink, Tillman Gerngross
17 Index 493
1
1
Applications ofNatural Fiber
Composites for Constructive
Parts in Aerospace,
Automobiles, and Other
Areas
Dr.-Ing. Dipl.-Chem. Ulrich Riedel1, Dipl.-Ing. Jörg Nickel2
1 Institut für Strukturmechamk, Deutsches Zentrum für Luft- und Raumfahrt,
Lüienthalplatz 7, D-38108 Braunschweig, Germany; Tel.: +49-531-2952865;
Fax: +49-531-2952838; E-mail: ulnch.nedel@dlr.de
2 Institut für Strukturmechanik, Deutsches Zentrum für Luft- und Raumfahrt,
Lüienthalplatz 7, D-38108 Braunschweig, Germany; Tel.: +49-531-2952859;
Fax: +49-531-2952838; E-mail: joerg.mckel@dlr.de
1 Introduction 2
2 Historical Outline 3
3 Natural Fiber-reinforced Construction Materials 5
3.1 Fibers 5
3.2 Biopolymers 6
3.2.1 Thermoplastics 9
3.2.2 Thermosets 12
4 Manufacturing Technologies 15
4.1 Impregnation of Nonwovens 15
4.1.1 Wet Impregnation 16
4.1.2 Commingled Procedures, Hybrid or Mixed Nonwovens 17
4.1.3 Film Stackmg Procedure for Manufacture of Semiproducts 17
4.1.4 Powder Impregnation 17
4.2 Manufacture of Structural Components 18
5 Properties of Quasiisotropic Biocomposites 19
6 Application Research 19
6.1 Designer Office Chairs 20
6.2 Door Paneling Elements 20
6.3 Pultruded Support Slats 21
6.4 New Thermosets based on Vegetable Oils 21
6.5 Safety Heimets 22
6.6 Inferior Paneling for Track Vehides 22
6.7 h.l.p.: Hand-friendly Image Products 2J
6.8 Conclusinns 24
7 Production 21
8 Patents 2t
8.1 Fibers 2-1
8.2 Resins 2S
8.5 Composites 2S
9 Outlook and Persp«ctives 26
10 References 27
I 29
2
Applications of Biopolymers
in Construction Engineering
Prof. Dr. Johann Plank
TU Munich, Institute for Inorganic Chemistry, Lichtenbergstr. 4, 85747 Garching,
Germany; Tel.: +49(89)289-13150; Fax: +49(89)289-13152;
E-mail: johann.plank@bauchemie-tum.de
1 Introduction 31
2 Historical Outline 32
3 The Construction Industry 33
3.1 Size of the Industry 33
3.2 Building Materials 33
3.3 Chemicals Used in Construction 34
4 Major Building Materials 35
4.1 Concrete 35
4.1.1 Fundamentals of Concrete Technology 35
4.1.2 Ready-mix Concrete 36
4.1.3 Precast Concrete 37
4.1.4 Self-compacting Concrete 38
4.1.5 Chemicals Used in Concrete 39
4.2 Grouts and Mortars 39
4.2.1 Floor Screeds 39
4.2.2 Self-leveling Underlayments 40
4.2.3 Tile Adhesives 41
4.2.4 Joint Fillers and Compounds 41
4.2.5 Injection Grouts 42
4.3 Wall Plasters 42
4.4 Piasterboards 43
4.5 Paints and Coatings 45
4.6 Oil and Gas Well Construction 45
4.6.1 Drilling Fluids 46
4.6.2 Oil Well Cementing 48
30 2 Applications ofBiopolymers in Construction Engineering
4.6.3 Well Cement Spacers 49
5 Biopolymers Used in Construction 50
5.1 Lignosulfonates 52
5.2 Biopolymers from Soil 56
5.2.1 Humic Acid 56
5.2.2 Ligmte 56
5.3 Hydrocarbon-based Biopolymers 57
5.3.1 Natural Oils 57
5.3.2 Waxes 58
5.3.3 Bitumen and Paraffin 58
5.4 Protein-based Biopolymers 59
5.4.1 Casein 59
5.4.2 Protein Hydrolysates 60
5.5 Starch and Cellulose Derivatives 61
5.5.1 Starch and Derivatives 61
5.5.2 Cellulose Derivatives 64
5.6 Seed Gums 68
5.6.1 Guar Gum 68
5.6.2 Locust Bean Gum 69
5.7 Exudate Gums and Root Resins 70
5.7.1 Oü of Turpentine and Colophonium 70
5.7.2 Root Resins 71
5.8 Microbial Biopolymers 72
5.8.1 Xanthan Gum 73
5.8.2 Scleroglucan 76
5.8.3 Welan Gum 78
5.8.4 Succinoglycan 80
5.8.5 Curdlan and Rhamsan 80
5.9 Chitosan 80
5.10 Biodegradable Polymers 81
5.10.1 Polyaspartic Acid 81
5.10.2 Polyesters 82
6 Biopolymers with Potential for Future Use 82
6.1 Tannins 84
6.2 Collagen and Gelatin 84
6.3 Alginates and Carrageenan 86
6.4 Pectin g7
6.5 Tamarind and Cassia 88
6.6 Gum Arabic, Gum Karaya and Gum Tragacanth 89
6.7 Dextran and Pullulan 90
7 Outlook and Perspectives 90
I97
3
Microbial Deterioration of
Synthetic and Biological
Polymers Used in
Engineering and
Construction
Prof. Ji-Dong Gu
Laboratory of Environmental Toxicology, Department of Ecology Biodiversity, The
University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative
Region, The People s Republic of China; and
The Swire Institute of Manne Science, The University of Hong Kong, Shek O, Cape
d Aguilar, Hong Kong SAR, P.R. China; Tel.: (852) (0) 2299-0605; Fax: (852) (0)
2517-6082; E-mail: jdgu@hkucc.hku.hk
1 Introduction J°
2 Historical Outline
3 Bacterial Adhesion on Surfaces 10°
3.1 Factors Affectmg Adhesion 101
102
3.1.1 External Environmental Factors
3.2 Ecological and Economic Implication of Bacterial Adhesion 102
4 Deterioration of Biopolymers and Synthetic Polymers 103
104
4.1 Biopolymers
4.1.1 Polyhydroxyalkanoates
4.1.2 Lignin, Cellulose and Wood
108
4.1.3 Modified Biopolymers
4.2 Synthetic Polymenc Materials used in Engineering and Construction .... 109
4.2.1 Electronic Insulation: Polyimides
4.2.2 Fiber-reinforced Polymenc Composite Materials (FRPCMs) 112
114
4.2.3 Corrosion-Protective Coatings
4.2.4 Polyethylene
4.2.5 Polypropylene
4.2.6 Polyvinyl Chloride
5 Methods to Assess Biodegradation and Biodeterioration 118
5-1 Biodegradation and Disintegration
5.2 Partial Degradation
5.3 Sensitive Detection of Resistivity Changes 119
5.3.1 Respirometry 119
5.3.2 Hydrolysis 120
5.3.3 Electrochemical Resistivity 120
5.3.4 Coupling the Microorganisms Involved and the Mechanisms of Degradation 120
6 Conclusions 121
7 References 122
4
Applications of
Polyphosphate and other
Biopolymers in Wastewater
Treatment
Prof. Dr. Akio Kuroda1, Prof. Dr. Hisao Ohtake2
1 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan;
Tel.: +81-824-24-7758; fax; +81- 824-24-7047; and PRESTO, Japan Science and
Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; E-mail: akuroda@
hiroshima-u.ac.jp
2 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan;
Tel.:+81-824-24-7756; fax: +81-824-24-7047; E-mail: hohtake@hiroshima-u.ac.jp
1 Introduction 140
2 Historical Outline 141
3 Analytical Methods for Polyphosphate 142
4 Synthesis of Polyphosphate 142
5 Cellular Function of Polyphosphate 143
5.1 Phosphagen 143
5.2 Phosphate Reservoir 144
5.3 Stress Regulator 144
6 Applications of Polyphosphate 145
6.1 Phosphorus Reuse and Recycling 145
6.1.1 PolyP Release from Activated Sludge 145
6.1.2 Chain Length of Released PolyP 147
6.1.3 PolyP Recovery 147
6.2 Polyphosphate as a Low-cost Phosphoryl Donor 148
6.3 Phosphorus Fiber 151
7 Using other Biopolymers in Wastewater Treatment 152
7.1 Biopolymers as Biodegradable Flocculating Agents 152
7.2 Biopolymer to Support Biofilm Formation 153
7.3 PHB in Denitrification Process in a Wastewater Treatment Plant 153
8 Outlook and Perspectives 153
9 Patent Applications 153
10 References 155
5
Mater-Bi: Biodegradable
Material for Various
Applications
Dr. Catia Bastioli
Novamont S.p.A., Via G. Fauser 8 28100 Novara-Italy; Tel.: + 39-321-699611;
Fax: +39-321-699601; E-mail: bastioli@materbi.com
1 Introduction 159
2 Historical Outline 160
3 Thermoplastic Starch 161
4 Mater-Bi Products on the Market 171
5 Conclusions 175
6 References 177
I
6
Chemical Modification of
Synthetic and Biosynthetic
Polyesters
Prof. Dr. Baki Hazer
Zonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak,
Turkey; Tel.: +11-90-372-3221703; Fax: +11-90-372-3238693;
E-mail: bhazer@karaelmas.edu.tr
1 Introduction 182
2 Chemical Modification of Synthetic Polyesters 183
2.1 Polyflactic acid), Poly(glycolic acid), and Poly(e-caprolactone) 183
2.1.1 Functionalization 184
2.1.2 Copolymerization 186
2.1.3 Crosslinked PLAs 192
2.2 Atactic-PHB (a-PHB) 193
2.2.1 Functionalization 194
2.2.2 Copolymerization 195
3 Chemical Modification of Biosynthetic Polyesters 195
3.1 Chemical Modification of sPHAs 196
3.1.1 Functionalization 196
3.1.2 Copolymerization 198
3.2 Chemical Modification of mPHAs 198
3.2.1 High-energy Irradiation 199
3.2.2 Peroxide Modification 200
3.2.3 Functionalization 201
4 References 204
Dedicated to Kevin Marshall
7
Biofilms
Prof. Hans-Curt Flemming, Dr. Jost Wingender
Institute for Interfacial Biotechnology, University of Duisburg, Geibelstr. 41,
D-47057 Duisburg, Germany; Tel.: +49-203-379-1937; Fax: +49-203-379-1937;
E-mail: HansCurtFlemming@compuserve.com
1 Introduction 210
2 Historical Outline 211
3 Composition and Structure of Biofilms 212
3.1 The EPS matrix 212
3.2 Structure of the Biofilm Matrix 215
3.3 Functional Aspects of the Biofilm Matrix 218
4 Formation and Development of Biofilms 219
4.1 Role of Intercellular Communication in Biofilm Formation 220
5 Environmental Role of Biofilms 220
6 Biotechnological Use of Biofilms 222
6.1 Wastewater Treatment 222
6.2 Bioremediation 223
7 Detrimental Biofilms 223
7.1 Biofilms in Medicine 223
7.2 Biofouling in Industrial Systems 223
7.2.1 Monitoring 226
7.3 Microbially Influenced Corrosion 227
7.4 Biodeterioration of Mineral Materials 228
7.5 Biodeterioration of Synthetic Polymers 230
8 Enhanced Resistance of Biofilm Organisms 231
8.1 Transport Limitation by Reaction-Diffusion Interaction 233
210 I 7 Bioßlms
8.2 Slow Growth Rate and General Stress Response 235
8.3 Role of Biofilm-specific Phenotype 236
8.4 Role of Persister Cells 237
9 Outlook and Perspectives 237
10 References 239
I 247
8
Health Issues of
Biopolymers:
Polyhydroxybutyrate
Dr. Thomas Freier1, Dr. Katrin Sternberg2, Dr. Detlef Behrend3,
Prof. Dr. Klaus-Peter Schmitz4
1 Institute for Biomedical Engineering University of Rostock Ernst-Heydemann-Str. 6
D-18055 Rostock Germany; Tel.: +49-381-54345502; Fax: +49-381-5435502;
E-mail: thomas.freier@chemie.uni-rostock.de
2 Institute for Biomedical Engineering University of Rostock Ernst-Heydemann-Str. 6
D-18055 Rostock Germany; Tel.: +49-381-5435515; Fax: +49-381-54345502;
E-mail: katrin.sternberg@chemie.uni-rostock.de
3 Institute for Biomedical Engineering University of Rostock Ernst-Heydemann-Str. 6
D-18055 Rostock Germany; Tel.: +49-381-4947605; Fax: +49-381-4947602;
E-mail: detlef.behrend@medizin.uni-rostock.de
? Institute for Biomedical Engineering University of Rostock Ernst-Heydemann-Str. 6
D-18055 Rostock Germany; Tel.: +49-381-4947601; Fax: +49-381-4947602;
E-mail: ibmt@medizin.uni-rostock.de
. . 248
1 Introduction
249
2 Historical Outline
3 Poly(3-hydroxybutyrate)
3.1 Mechanical Properties
3.2 Biocompatibility
3.2.1 Toxicity
3.2.2 Cell Culture Studies ^
3.2.3 In vivo Studies
2. d4
3.2.4 Blood Compatibility
3.3 In vitro Degradation
3.4 In vivo Degradation
3.5 Investigations of Clinical Applications 2iJ
3.5.1 Patch Materials
261
3.5.2 Stents
3.5.3 Bone Implants
3.5.4 Drug Delivery Systems
I
3.5.5 Other Applications • 264
4 Poly(4-hydroxybutyrate) 264
4.1 Mechanical Properties • 264
4.2 Biocompatibility • 264
4.3 In vitro Degradation ¦ 265
4.4 In vivo Degradation 265
4.5 Investigations on Clinical Applications • 265
5 Excursion: Biopolymers other than PHA 266
5.1 Polypeptides 266
5.2 Polysaccharides 267
6 Outlook and Perspectives 268
7 References 270
9
Biotechnological Processes
for the Production of
Monomers for Subsequent
Chemical Polymer Synthesis
Dr. Sang Yup Lee1, M. Eng. Si Jae Park2, M. Eng. Young Lee3, M. Eng. Seung Hwan j
Lee4 ^ ;
Metabolie and Biomolecular Engineering National Research Laboratory, Depart-
ment of Chemical Biomolecular Engineering, B.oProcess Engineering Research ;
Center and Center for Ultramicrochemkal Process Systems, Korea Advanced ;
Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Dae,eon
305-701, Republxc of Korea; Tel.: +82-42-869-3930; Fax: +82-42-869-3910;
E-mail: leesy@mail.kaist.ac.kr
Metabolie and Biomolecular Engineering National Research Laboratory, Depart¬
ment of Chemical Biomolecular Engineering and BioProcess Engineering
Research Center, Korea Advanced Institute of Science and Technology, 373-1
Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea;
Tel • +82-42-869-5970; Fax: +82-42-869-3910; E-maü: parks,(g)maü.kaistac.kr
Metabolie and Biomolecular Engineering National Research Laboratory, Depart¬
ment of Chemical Biomolecular Engineering and B.oProcess Engmeenng
Research Center, Korea Advanced Institute of Saence and Technology,373-1
Guseong-dong, Yuseong-gu, Daejeon 305-701, Repubhc of Korea; and Ch.roB.o
Ine #2324 Undergraduate Building 2, Korea Advanced Institute of Saence and
Technolo£ 371 Guseong-dong, Yuseong-gu, Daejeon 305-701, Repubhc of Korea;
Tel +S2 869-5970- Fax: +82-42-869-3910; E-mail: chirobkxffima.l.ka.st.ac.kr
« M tab^l11 Biomolecular Engmeenng National Research Laboratory, Depart¬
ment of Chem.cal Biomolecular Engineering and BioProcess Engmeenng
Research Center, Korea Advanced Institute of Saence and Technology. 373-1
^Äsrsr shL::s,ka,s,,kr
282
1 Introduction
283
2 Historical Outline
3 MonomersfortheSynthesisofPolyesters 284
3.1 Dicarboxylic Acids and Diols ^
3.1.1 SuccinicAcid
3.1.2 Adipic Acid 286
3.1.3 1,2-Propanediol 286
3.1.4 1,3-Propanediol 287
3.1.5 1,4-Butanediol 287
3.2 Hydroxy Acids 288
3.2.1 LacticAcid 288
3.2.2 Lactones and Other Cyclic Esters 289
4 Dicarboxylic Acids 289
4.1 ItaconicAcid 289
4.2 FumaricAcid 290
5 Amino Acids 292
5.1 Fermentative Production 292
5.1.1 L-Glutamic Acid 292
5.1.2 L-Lysine 293
5.2 Enzymatic Synthesis 295
5.2.1 Aspartic Acid 296
5.2.2 Other Aspects 297
6 Acrylamide 298
7 Outlook and Perspectives 299
8 Patents 300
9 References 302
1 Introduction 309
2 Historical Outline 310
3 Microbial Polysaccharides 310
3.1 Bacterial Cellulose (ß-D-Glucan) 311
3.1.1 BC Fermentation 311
3.1.2 Culture Media 312
3.1.3 Recovery Method 313
3.2 Pullulan (a-D-Glucan) 313
3.2.1 Pullulan Production by Fermentation 313
3.2.2 Culture Media 314
3.2.3 Recovery Method 314
3.3 Xanthan 315
3.3.1 Xanthan Fermentation 316
3.3.2 Recovery Method 316
4 Poly-y-glutamic acid (7-PCA) 317
4.1 Production of y-PGA 318
4.2 Recovery of y-PGA 319
5 Polyhydroxyalkanoates (PHAs) 319
5.1 Poly(3-hydroxybutyrate) 320
5.2 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 323
5.3 Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 324
5.4 Medium-chain-length Poly(3-hydroxyalkanoates) 328
6 Outlook and Perspectives 329
7 Patents 32g
8 References 333
11
Sustainability,
Agro-resources and
Technology in the Polymer
Industry
Dr ir Sietze Vellema1, Ir. Robert van Tuil2, Dr. Gerrit Eggink3
1ATO (Institute for Agro-technological Research), Wageningen Umversity and
Research Centre, PO Box 17, 6700 AA, Wageningen, the Netherlands;
Tel • +31-317-477-538- Fax: +31-317-475-347; E-mail: S.Vellema@ato.wag-ur.nl
ATO (Institute for Agro-technological Research), Wageningen Umversity and
Research Centre, PO Box 17, 6700 AA, Wageningen, the Netherlands;
Tel ¦ +31-317-477-565; Fax: +31-317-475-347; E-maü: R.F.vanTud@ato.wag-ur.nl
^ ATO (Institute for Agro-technological Research), Wageningen Univers.ty and
Research Centre PO Box 17, 6700 AA, Wageningen, the Netherlands;
Tel +31-317-475-322; Fax: +31-317-475-347; E-mail: G.Eggink@ato.wag-u,nl
340
1 Introduction
341
2 Technology and Sustainability
2.1 Fme-tumng Business Strategy and Technology Strategy .... ¦¦ ¦ ¦ ¦ • •
2.2 Transition to a Bio-based Industry: Sectoral Integration m the Netherlands . 342
2.3 Perspectives on Healthy and Sustainable Technology Development 345
2.4 Can Sustainability Drive Technology?
and Bio-based Industrial Products ••••••,•••; .. 348
3.2 USA: Technology Vision for the Chemical Industry in 2020 348
3.3 UK: A Chemicals Renaissance 351
3 4 Netherlands- Catalysis Roadmap • ¦
3^ OECD Biotechnology for Clean Industnal Products and Processes
3.6 Keys to Sustainability in the Materials Industry
.... 355
41 ^^SZ^«*^^^*^ ¦¦¦¦ lf7
42 High-performance Polymers and Materials ••-•••¦ »
4 2 1 N turally Occurnng Raw Materials, Monomers, and Polymers 358
A Bitynthetic Monomers, Co) Polymers, and Material Design 358
I
4.2.3 Transformation of Polymers into Polymeric Materials 359 i
4.3 Safe and Efficient Waste Management and Transformation to Resource or s
Energy 359
1
5 Conclusion 360 s
1
6 References 361 1
12
Biodegradability of
Polymers: Regulations and
Methods for Testing
Dr. Rolf-Joachim Müller . rrr,.„„.
Gesellschaft für Biotechnologische Forschung mbH, Braunschwexg, Germany,
Tel, +49 (0)531 6181 610; Fax: + 49 (0)531 6181 175; E-mail: rmu@gbf.de
366
1 Introduction
2 General Mechanism of Biodegradation, and Definition*
370
3 Testing Methods 373
3.1 General Principles in Testing Biodegradable Plastics ^
3.2 Analytical Procedures for Monitoring Biodegradation [ .. . .. 375
3.2.1 Visual Observations , 375
3.2.2 Changes in Mechanical Properties and Molar Mass,.^ • _ ¦ ¦ ¦ ¦ ¦ ¦
3.2.3 Welght Loss Measurements: Determination of Residual Polymer .... ^
3.2.4 CO2 evolution/02 Consumption 378
3.2.5 Determination of Biogas 37g
3.2.6 Radiolabeling 378
3.2.7 Clear-zone Formation 379
338 DetropmentofStandardized Biodegradation Tests . . . . . ¦ •¦¦ ¦ ¦ ¦ ¦ • •¦ • ^9
3.3.1 Testing Compostability 383
3.3.2 Testing Anaerobic Biodegradation 384
3.3.3 Testing Biodegradarion in Soll
4 Regulations Concerning Biodegradable Plastics
¦JOT
5 Certifcation and Labe.ing of Biodegradab.e Plastics
388
6 References
13
Evaluation and Certification
of Compostable Polymeric
Materials and Products
Dr.ir. Maarten van der Zee _ n
ATO B.V., Department of Polymers, Composites and Additives, P .CX Box 17 NL-6700
AA Wageningen, The Netherlands; Tel, +31-317-475229; Fax: +31-317-475347,
E-mail: m.vanderzee@ato.wag-ur.nl.
394
1 Introduction
394
2 Background
395
3 Defining Biodegradability
396
4 Why is Compostability an Issue?
5 The European Council Directive on Packaging and Packaging Waste 396
398
6 Evaluation of Compostability 400
6.1 Characterization 401
6.2 Biodegradability 401
6.3 Disintegration 401
6.4 Effects on the Composting Process ¦ ¦ • 4Q2
6.5 Effects on Compost Quality
402
7 Evaluation versus Certification
r, .403
8 Examples of Current Certifkat.on Programs • ¦ ^
8.1 Compostability Mark of IBAW 404
8.2 OK Compost Logo of AVI 405
u cZS :»x; p:- .»8^-—;;;;;;;;;::;::; «
8.5 Other Developments
406
9 Future Perspectives
10 References 408
14
Life-cycle Assessment of Bio-
based Polymers and Natural
Fiber Composites
Dr. Martin Patel1, Dr. Catia Bastioli2, Dr. Luigi MarinP, Dipl.-Geoökol. Eduard
Würdinger4
1 Utrecht Umversity, Department of Science, Technology and Society (STS),
Copernicus Institute, Padualaan 14, NL-3584 CH Utrecht, Netherlands;
Tel • +31 30 253 7634; Fax: +31 30 253 7601; E-mail: m.patel@chem.uu.nl
2 Novamont, Via Fauser 8, 1-28100 Novara, Italy;
Tel, +39 0321 699 611; Fax: +39 0321 699 600; E-mail: bastiol.@materbi.com
3 Novamont, Via Fauser 8, 1-28100 Novara, Italy;
Tel ¦ +39 0321 699 611; Fax: +39 0321 699 600; E-mail: manm@materbi.com
« BIFA^avanan Institute of Applied Environmental Research and Technology), Am
Mittleren Moos 46, D-86167 Augsburg, Germany;
Tel, +49 821 7000-181; Fax: +49 821 7000-100; E-mail: ewuerd.nger@bifa.de
410
1 Introduction
411
2 Historical Outline
412
3 Methodology of LCA
414
4 Presentation of Comparative Data ^
4.1 Starch Polymers 415
4.1.1 Starch Polymer Pellets 417
4.1.2 Starch Polymer Loose Fills 42]
4.1.3 Starch Polymer Films and Bags . . . • • ¦ • • • • _•
4.1.4 Starch Nanoparticles as Fillers in Automobile Tires 425
4.2 Polyhydroxyalkanoates (PHA) ^
:: rir^ -^^::::::::::::::::- :z
4.4.1 Applications in Mulch Films and Chips ^
4.4.2 Applications in Electron.cs ^
4.4.3 Applications in Lacquers ^
4.5 Natural Fiber Composites .
4.5.1 Use in Automobile Construcnon
I
4.5.2 Use in Packaging and Transportation 4-35
5 Summarizing Comparison 436
6 Discussion 443
7 Conclusions 446
7.1 Summary and Further Elaboration of Findings 446
7.2 Outlook and Perspectives 448
8 References 450
I
I
15 [
Biodegradable Plastics in the
| Social and Political
i Environment
!
£S K—ffe^ugende Industne e.V., Geschäftsbereich Kunststoff und
j Umwelt, Karlstraße 21, D-60329 Frankfurt am Main, Germany,
Tel, +49-69-25561309; Fax: +49-69-251060; E-mad: mgo.sartonus@vke.de
454
1 Introduction
454
2 Scope
455
3 Applications
457
4 Performance
458
5 Raw Material Base 458
5.1 Manufacture 459
5.2 Biodegradation
461
6 Assessment 461
6.1 Product Usein Practice ¦ •; ¦ , __ „ 462
6.2 The Comprehensive Approach: Ecolog.cal Relevance
464
7 Recovery and Disposal
466
; 8 Legal Framework
468
9 Consequences and Future Developments
469
10 Outlooks and Perspectives
471
11 References
16
Evaluating the
Environmental Impact of
Biopolymers
Dr. Steven Slater1, Dr. David Glassner2, M.Sc. Erwin Vink3, Dr. Tillman Gerngross4
1 Monsanto Protein Technologies, PO Box 620999, Middleton. WI 53562, USA;
Tel.: +1-608-8213434; Fax:+1-608-8361319;
E-mail :steven.c.slater@monsanto.com
2Cargill-Dow, 15305 Minnetonka Blvd., Minnetonka, MN, 55345 USA;
Tel.: +1-952-7420456; Fax: +1-952-7420477 ;
E-mail: david_glassner@cargilldow.com
3Cargill Dow BV, Lijsterbes 25, St. Jansteen, 4564 GC, Netherlands;
Tel • +31-114-315944; Fax: + 31-114-315938; E-mail: Erwin_Vink( cargilldow.com
Dartmouth College, 8000 Cummings Hall Hanover, NU 03755. USA;
Tel.: +1-603-6463161; Fax: + 1-603-6462277;
E-mail: tillman.u.gerngross@dartmouth.edu
. . 474
1 Introduction
2 Historical Outline
3 The 12 Principles of Green Chemistry 476
4 Plastics Derived from Renewable Resources and Their Place Within a Green
Chemistry Framework
4.1 Polymers Produced Directly by Biological Systems 4/K
4.1.1 Polysaccharides ^
4.1.2 Proteins . 4y()
4.1.3 Poly(hydroxyalkanoates) ¦ ¦ • ¦ • • •
4.2 Polymers Produced Indirectly Using Biological Systems 4,
4.2.1 Polylactide
4.2.2 Poly(tnmethylene terephthalate)
5 Application of Life-cycle Analysis to Biopolymer Production 481
5 1 Life-cycle Analysis of PHA Product.on by Fermentat.on 48
52 Life-cyde Analys.s of PHA Production in Plant* 482
53 Ufe-cyde Analysis ofPolylact.de Product.on 484
5.3.1 Cargill Dov/s Current Process for Production of Polylactide 484
5.3.2 Meeting the Challenge of Renewable Energy: Opportumties to Further Reduce
the Environmental Impact of Polylactide Production 487
6 Outlook and Perspectives 488
7 References 491
|
any_adam_object | 1 |
author_GND | (DE-588)110816943 (DE-588)1095130498 |
building | Verbundindex |
bvnumber | BV013846292 |
ctrlnum | (OCoLC)314004884 (DE-599)BVBBV013846292 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01217nam a2200301 cc4500</leader><controlfield tag="001">BV013846292</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030303 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010801s2003 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527302298</subfield><subfield code="9">3-527-30229-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314004884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013846292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biopolymers</subfield><subfield code="n">10</subfield><subfield code="p">General aspects and special applications</subfield><subfield code="c">ed. by A. Steinbüchel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 516 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steinbüchel, Alexander</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)110816943</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doi, Yoshiharu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vandamme, Erick J.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1095130498</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013746142</subfield><subfield code="g">10</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009470556&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009470556</subfield></datafield></record></collection> |
id | DE-604.BV013846292 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:53:05Z |
institution | BVB |
isbn | 3527302298 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009470556 |
oclc_num | 314004884 |
open_access_boolean | |
owner | DE-384 DE-355 DE-BY-UBR DE-92 DE-91G DE-BY-TUM DE-703 DE-1102 DE-11 |
owner_facet | DE-384 DE-355 DE-BY-UBR DE-92 DE-91G DE-BY-TUM DE-703 DE-1102 DE-11 |
physical | X, 516 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Biopolymers 10 General aspects and special applications ed. by A. Steinbüchel Weinheim [u.a.] Wiley-VCH 2003 X, 516 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Steinbüchel, Alexander Sonstige (DE-588)110816943 oth Doi, Yoshiharu Sonstige oth Vandamme, Erick J. Sonstige (DE-588)1095130498 oth (DE-604)BV013746142 10 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009470556&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Biopolymers |
title | Biopolymers |
title_auth | Biopolymers |
title_exact_search | Biopolymers |
title_full | Biopolymers 10 General aspects and special applications ed. by A. Steinbüchel |
title_fullStr | Biopolymers 10 General aspects and special applications ed. by A. Steinbüchel |
title_full_unstemmed | Biopolymers 10 General aspects and special applications ed. by A. Steinbüchel |
title_short | Biopolymers |
title_sort | biopolymers general aspects and special applications |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009470556&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013746142 |
work_keys_str_mv | AT steinbuchelalexander biopolymers10 AT doiyoshiharu biopolymers10 AT vandammeerickj biopolymers10 |