Algebraic methods in philosophical logic:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Clarendon Press
2001
|
Schriftenreihe: | Oxford logic guides
41 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 470 S. graph. Darst. |
ISBN: | 0198531923 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013752187 | ||
003 | DE-604 | ||
005 | 20221206 | ||
007 | t | ||
008 | 010531s2001 xxkd||| |||| 00||| eng d | ||
020 | |a 0198531923 |9 0-19-853192-3 | ||
035 | |a (OCoLC)46240293 | ||
035 | |a (DE-599)BVBBV013752187 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-739 |a DE-29T |a DE-521 |a DE-11 |a DE-19 |a DE-473 | ||
050 | 0 | |a QA10.D85 2001 | |
082 | 0 | |a 511.3/24 21 | |
082 | 0 | |a 511.3/24 |2 21 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Dunn, J. Michael |d 1941-2021 |e Verfasser |0 (DE-588)124999123 |4 aut | |
245 | 1 | 0 | |a Algebraic methods in philosophical logic |c J. Michael Dunn and Gary M. Hardagree |
264 | 1 | |a Oxford |b Clarendon Press |c 2001 | |
300 | |a XV, 470 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Oxford logic guides |v 41 | |
650 | 7 | |a Algebra |2 gtt | |
650 | 7 | |a Logica |2 gtt | |
650 | 4 | |a Logique algébrique | |
650 | 7 | |a Modale logica |2 gtt | |
650 | 7 | |a Partiële orde |2 gtt | |
650 | 7 | |a Semantiek |2 gtt | |
650 | 4 | |a Logik | |
650 | 4 | |a Semantik | |
650 | 4 | |a Algebraic logic | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtklassische Logik |0 (DE-588)4197462-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logik |0 (DE-588)4036202-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Methode |0 (DE-588)4141841-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassische Logik |0 (DE-588)4333219-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vollständigkeit |0 (DE-588)4284513-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Logik |0 (DE-588)4036202-4 |D s |
689 | 0 | 1 | |a Algebraische Methode |0 (DE-588)4141841-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Klassische Logik |0 (DE-588)4333219-5 |D s |
689 | 2 | 1 | |a Vollständigkeit |0 (DE-588)4284513-0 |D s |
689 | 2 | 2 | |a Nichtklassische Logik |0 (DE-588)4197462-1 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Hardegree, Gary M. |e Verfasser |4 aut | |
830 | 0 | |a Oxford logic guides |v 41 |w (DE-604)BV000013997 |9 41 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009400917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009400917 |
Datensatz im Suchindex
_version_ | 1804128572380545024 |
---|---|
adam_text | ALGEBRAIC METHODS IN PHILOSOPHICAL LOGIC J. MICHAEL DUNN AND GARY M.
HARDEGREE CLARENDON PRESS * OXFORD 2001 CONTENTS 1 INTRODUCTION 2
UNIVERSAL ALGEBRA 10 2.1 INTRODUCTION 10 2.2 RELATIONAL AND OPERATIONAL
STRUCTURES (ALGEBRAS) 10 2.3 SUBRELATIONAL STRUCTURES AND SUBALGEBRAS 11
2.4 INTERSECTION, GENERATORS, AND INDUCTION FROM GENERATORS 13 2.5
HOMOMORPHISMS AND ISOMORPHISMS 15 2.6 CONGRUENCE RELATIONS AND QUOTIENT
ALGEBRAS 19 2.7 DIRECT PRODUCTS 25 2.8 SUBDIRECT PRODUCTS AND THE
FUNDAMENTAL THEOREM OF UNIVERSAL ALGEBRA 28 2.9 WORD ALGEBRAS AND
INTERPRETATIONS 33 2.10 VARIETIES AND EQUATIONAL DEFINABILITY 36 2.11
EQUATIONAL THEORIES 37 2.12 EXAMPLES OF FREE ALGEBRAS 39 2.13 FREEDOM
AND TYPICALITY 41 2.14 THE EXISTENCE OF FREE ALGEBRAS; FREEDOM IN
VARIETIES AND SUBDIRECT CLASSES 44 2.15 BIRKHOFF S VARIETIES THEOREM 47
2.16 QUASI-VARIETIES 49 2.17 LOGIC AND ALGEBRA: ALGEBRAIC STATEMENTS OF
SOUNDNESS AND COMPLETENESS 51 3 ORDER, LATTICES, AND BOOLEAN ALGEBRAS -
55 3.1 INTRODUCTION 55 3.2 PARTIALLY ORDERED SETS , 55 3.3 STRICT
ORDERINGS , 58 3.4 COVERING AND HASSE DIAGRAMS . 60 3.5 INFIMA AND
SUPREMA 63 3.6 LATTICES 67 3.7 THE LATTICE OF CONGRUENCES 70 3.8
LATTICES AS ALGEBRAS 71 3.9 ORDERED ALGEBRAS 74 3.10 TONOIDS 77 3.11
TONOID VARIETIES 82 3.12 CLASSICAL COMPLEMENTATION 85 3.13 NON-CLASSICAL
COMPLEMENTATION 88 3.14 CLASSICAL DISTRIBUTION 92 3.15 NON-CLASSICAL
DISTRIBUTION 98 3.16 CLASSICAL IMPLICATION 105 3.17 NON-CLASSICAL
IMPLICATION 109 3.18 FILTERS AND IDEALS 115 CONTENTS 4 SYNTAX 4.1
INTRODUCTION 4.2 THE ALGEBRA OF STRINGS 4.3 THE ALGEBRA OF SENTENCES 4.4
LANGUAGES AS ABSTRACT STRUCTURES: CATEGORIAL GRAMMAR 4.5 SUBSTITUTION
VIEWED ALGEBRAICALLY (ENDOMORPHISMS) 4.6 EFFECTIVITY 4.7 ENUMERATING
STRINGS AND SENTENCES 5 SEMANTICS 141 5.1 INTRODUCTION 141 5.2
CATEGORIAL SEMANTICS 142 5.3 ALGEBRAIC SEMANTICS FOR SENTENTIAL
LANGUAGES 144 5.4 TRUTH-VALUE SEMANTICS 146 5.5 POSSIBLE WORLDS
SEMANTICS 148 5.6 LOGICAL MATRICES AND LOGICAL ATLASES 152 5.7
INTERPRETATIONS AND VALUATIONS 155 5.8 INTERPRETED AND EVALUATIONALLY
CONSTRAINED LANGUAGES 158 5.9 SUBSTITUTIONS, INTERPRETATIONS, AND
VALUATIONS 162 5.10 VALUATION SPACES 166 5.11 VALUATIONS AND LOGIC 169
5.12 EQUIVALENCE 172 5.13 COMPACTNESS 176 5.14 THE THREE-FOLD WAY 181 6
LOGIC 184 6.1 MOTIVATIONAL BACKGROUND 184 6.2 THE VARIETIES OF LOGICAL
EXPERIENCE 185 6.3 WHAT IS (A) LOGIC? 187 6.4 LOGICS AND VALUATIONS
189 6.5 BINARY CONSEQUENCE IN THE CONTEXT OF PRE-ORDERED SETS 191 6.6
ASYMMETRIC CONSEQUENCE AND VALUATIONS (COMPLETENESS) 194 6.7 ASYMMETRIC
CONSEQUENCE IN THE CONTEXT OF PRE-ORDERED GROUPOIDS 196 6.8 SYMMETRIC
CONSEQUENCE AND VALUATIONS (COMPLETENESS AND ABSOLUTENESS) 199 6.9
SYMMETRIC CONSEQUENCE IN THE CONTEXT OF HEMI-DISTRIBUTOIDS 202 6.10
STRUCTURAL (FORMAL) CONSEQUENCE 208 6.11 LINDENBAUM MATRICES AND
COMPOSITIONAL SEMANTICS FOR ASSERTIONAL FORMAL LOGICS 209 6.12
LINDENBAUM ATLAS AND COMPOSITIONAL SEMANTICS FOR FORMAL ASYMMETRIC
CONSEQUENCE LOGICS 211 6.13 SCOTT ATLAS AND COMPOSITIONAL SEMANTICS FOR
FORMAL SYMMETRIC CONSEQUENCE LOGICS 213 CONTENTS XIII 6.14
CO-CONSEQUENCE AS A CONGRUENCE 214 6.15 FORMAL PRESENTATIONS OF LOGICS
(AXIOMATIZATIONS) 216 6.16 EFFECTIVENESS AND LOGIC 224 7 MATRICES AND
ATLASES 226 7.1 MATRICES 226 7.1.1 BACKGROUND 226 7.1.2 LUKASIEWICZ
MATRICES/SUBMATRICES, ISOMORPHISMS 227 7.1.3 G6DEL MATRICES/MORE
SUBMATRICES 230 7.1.4 SUGIHARA MATRICES/HOMOMORPHISMS 230 7.1.5 DIRECT
PRODUCTS 232 7.1.6 TAUTOLOGY PRESERVATION 232 7.1.7 INFINITE MATRICES
233 7.1.8 INTERPRETATION 234 7.2 RELATIONS AMONG MATRICES: SUBMATRICES,
HOMOMORPHIC IMAGES, AND DIRECT PRODUCTS 237 7.3 PROTO-PRESERVATION
THEOREMS 239 7.4 PRESERVATION THEOREMS 243 7.5 VARIETIES THEOREM ANALOGS
FOR MATRICES 246 7.5.1 UNARY ASSERTIONAL LOGICS 246 7.5.2 ASYMMETRIC
CONSEQUENCE LOGICS 247 7.5.3 SYMMETRIC CONSEQUENCE LOGICS 249 7.6
CONGRUENCES AND QUOTIENT MATRICES 249 7.7 THE STRUCTURE OF CONGRUENCES
254 7.8 THE CANCELLATION PROPERTY 257 7.9 NORMAL MATRICES .... 262 7.10
NORMAL ATLASES 266 7.11 NORMAL CHARACTERISTIC MATRICES FOR CONSEQUENCE
LOGICS 270 7.12 MATRICES AND ALGEBRAS 271 7.13 WHEN IS A LOGIC
ALGEBRAIZABLE ? V 273 8 REPRESENTATION THEOREMS 277 8.1 PARTIALLY
ORDERED SETS WITH IMPLICATION(S) 277 8.1.1 PARTIALLY ORDERED SETS 277
8.1.2 IMPLICATION STRUCTURES 278 8.2 SEMI-LATTICES 287 8.3 LATTICES 288
8.4 FINITE DISTRIBUTIVE LATTICES 293 8.5 THE PROBLEM OF A GENERAL
REPRESENTATION FOR DISTRIBUTIVE LATTICES 295 8.6 STONE S REPRESENTATION
THEOREM FOR DISTRIBUTIVE LATTICES 297 8.7 BOOLEAN ALGEBRAS 300 8.8
FILTERS AND HOMOMORPHISMS 302 8.9 MAXIMAL FILTERS AND PRIME FILTERS 302
CONTENTS 8.10 STONE S REPRESENTATION THEOREM FOR BOOLEAN ALGEBRAS 303
8.11 MAXIMAL FILTERS AND TWO-VALUED HOMOMORPHISMS 305 8.12 DISTRIBUTIVE
LATTICES WITH OPERATORS 313 8.13 LATTICES WITH OPERATORS 317 9 CLASSICAL
PROPOSITIONAL LOGIC 321 9.1 PRELIMINARY NOTIONS 321 9.2 THE EQUIVALENCE
OF (UNITAL) BOOLEAN LOGIC AND FREGE LOGIC 322 9.3 SYMMETRICAL ENTAILMENT
324 9.4 COMPACTNESS THEOREMS FOR CLASSICAL PROPOSITIONAL LOGIC 326 9.5 A
THIRD LOGIC 333 9.6 AXIOMATIC CALCULI FOR CLASSICAL PROPOSITIONAL LOGIC
334 9.7 PRIMITIVE VOCABULARY AND DEFINITIONAL COMPLETENESS 335 9.8 THE
CALCULUS BC 337 9.9 THE CALCULUS Z)(BC) 341 9.10 ASYMMETRICAL SEQUENT
CALCULUS FOR CLASSICAL PROPOSITIONAL LOGIC 346 9.11 FRAGMENTS OF
CLASSICAL PROPOSITIONAL LOGIC 348 9.12 THE IMPLICATIVE FRAGMENT OF
CLASSICAL PROPOSITIONAL LOGIC: SEMI-BOOLEAN ALGEBRAS 349 9.13
AXIOMATIZING THE IMPLICATIVE FRAGMENT OF CLASSICAL PROPOSITIONAL LOGIC
350 9.14 THE POSITIVE FRAGMENT OF CLASSICAL PROPOSITIONAL LOGIC 352 10
MODAL LOGIC AND CLOSURE ALGEBRAS 356 10.1 MODAL LOGICS 356 10.2 BOOLEAN
ALGEBRAS WITH A NORMAL UNITARY OPERATOR 358 10.3 FREE BOOLEAN ALGEBRAS
WITH A NORMAL UNITARY OPERATOR AND MODAL LOGIC 361 10.4 THE KRIPKE
SEMANTICS FOR MODAL LOGIC 361 10.5 COMPLETENESS 363 10.6 TOPOLOGICAL
REPRESENTATION OF CLOSURE ALGEBRAS 364 10.7 THE ABSOLUTE SEMANTICS FOR
S5 367 10.8 HENLE MATRICES 367 10.9 ALTERNATION PROPERTY FOR S4 AND
COMPACTNESS 369 10.10 ALGEBRAIC DECISION PROCEDURES FOR MODAL LOGIC
370 10.11 S5 AND PRETABULARITY 375 11 INTUITIONISTIC LOGIC AND HEY TING
ALGEBRAS 380 11.1 INTUITIONISTIC LOGIC 380 11.2 IMPLICATIVE LATTICES 381
11.3 HEYTING ALGEBRAS 383 11.4 REPRESENTATION OF HEYTING ALGEBRAS USING
QUASI-ORDERED SETS 383 11.5 TOPOLOGICAL REPRESENTATION OF HEYTING
ALGEBRAS 384 CONTENTS 11.6 EMBEDDING HEYTING ALGEBRAS INTO CLOSURE
ALGEBRAS 386 11.7 TRANSLATION OF H INTO S4 386 11.8 ALTERNATION PROPERTY
FOR H 387 11.9 ALGEBRAIC DECISION PROCEDURES FOR INTUITIONISTIC LOGIC
388 11.10 LC AND PRETABULARITY 390 12 GAGGLES: GENERAL GALOIS LOGICS 394
12.1 INTRODUCTION 394 12.2 RESIDUATION AND GALOIS CONNECTIONS 395 12.3
DEFINITIONS OF DISTRIBUTOID AND TONOID 398 12.4 REPRESENTATION OF
DISTRIBUTOIDS 400 12.5 PARTIALLY ORDERED RESIDUATED GROUPOIDS 406 12.6
DEFINITION OF A GAGGLE 408 12.7 REPRESENTATION OF GAGGLES 409 12.8
MODIFICATIONS FOR DISTRIBUTOIDS AND GAGGLES WITH IDENTITIES AND
CONSTANTS 412 12.9 APPLICATIONS 414 12.10 MONADIC MODAL OPERATORS 415
12.11 DYADIC MODAL OPERATORS 417 12.12 IDENTITY ELEMENTS 420 12.13
REPRESENTATION OF POSITIVE BINARY GAGGLES 421 12.14 IMPLICATION 422
12.14.1 IMPLICATION IN RELEVANCE LOGIC 423 12.14.2 IMPLICATION IN
INTUITIONISTIC LOGIC 424 12.14.3 MODAL LOGIC 424 12.15 NEGATION ... 425
12.15.1 THE GAGGLE TREATMENT OF NEGATION 425 12.15.2 NEGATION IN
INTUITIONISTIC LOGIC 426 12.15.3 NEGATION IN RELEVANCE LOGIC 427 12.15.4
NEGATION IN CLASSICAL LOGIC 429 12.16 FUTURE DIRECTIONS 430 13
REPRESENTATIONS AND DUALITY 431 13.1 REPRESENTATIONS AND DUALITY 431
13.2 SOME TOPOLOGY 433 13.3 DUALITY FOR BOOLEAN ALGEBRAS * 435 13.4
DUALITY FOR DISTRIBUTIVE LATTICES 438 13.5 EXTENSIONS OF STONE S AND
PRIESTLEY S RESULTS 441 REFERENCES 445 INDEX 455
|
any_adam_object | 1 |
author | Dunn, J. Michael 1941-2021 Hardegree, Gary M. |
author_GND | (DE-588)124999123 |
author_facet | Dunn, J. Michael 1941-2021 Hardegree, Gary M. |
author_role | aut aut |
author_sort | Dunn, J. Michael 1941-2021 |
author_variant | j m d jm jmd g m h gm gmh |
building | Verbundindex |
bvnumber | BV013752187 |
callnumber-first | Q - Science |
callnumber-label | QA10 |
callnumber-raw | QA10.D85 2001 |
callnumber-search | QA10.D85 2001 |
callnumber-sort | QA 210 D85 42001 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 SK 130 |
ctrlnum | (OCoLC)46240293 (DE-599)BVBBV013752187 |
dewey-full | 511.3/2421 511.3/24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/24 21 511.3/24 |
dewey-search | 511.3/24 21 511.3/24 |
dewey-sort | 3511.3 224 221 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02483nam a2200661 cb4500</leader><controlfield tag="001">BV013752187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010531s2001 xxkd||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198531923</subfield><subfield code="9">0-19-853192-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46240293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013752187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA10.D85 2001</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/24 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunn, J. Michael</subfield><subfield code="d">1941-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124999123</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic methods in philosophical logic</subfield><subfield code="c">J. Michael Dunn and Gary M. Hardagree</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 470 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford logic guides</subfield><subfield code="v">41</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modale logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partiële orde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semantiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtklassische Logik</subfield><subfield code="0">(DE-588)4197462-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Methode</subfield><subfield code="0">(DE-588)4141841-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassische Logik</subfield><subfield code="0">(DE-588)4333219-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollständigkeit</subfield><subfield code="0">(DE-588)4284513-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Methode</subfield><subfield code="0">(DE-588)4141841-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Klassische Logik</subfield><subfield code="0">(DE-588)4333219-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Vollständigkeit</subfield><subfield code="0">(DE-588)4284513-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Nichtklassische Logik</subfield><subfield code="0">(DE-588)4197462-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hardegree, Gary M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford logic guides</subfield><subfield code="v">41</subfield><subfield code="w">(DE-604)BV000013997</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009400917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009400917</subfield></datafield></record></collection> |
id | DE-604.BV013752187 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:51:22Z |
institution | BVB |
isbn | 0198531923 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009400917 |
oclc_num | 46240293 |
open_access_boolean | |
owner | DE-739 DE-29T DE-521 DE-11 DE-19 DE-BY-UBM DE-473 DE-BY-UBG |
owner_facet | DE-739 DE-29T DE-521 DE-11 DE-19 DE-BY-UBM DE-473 DE-BY-UBG |
physical | XV, 470 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Clarendon Press |
record_format | marc |
series | Oxford logic guides |
series2 | Oxford logic guides |
spelling | Dunn, J. Michael 1941-2021 Verfasser (DE-588)124999123 aut Algebraic methods in philosophical logic J. Michael Dunn and Gary M. Hardagree Oxford Clarendon Press 2001 XV, 470 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford logic guides 41 Algebra gtt Logica gtt Logique algébrique Modale logica gtt Partiële orde gtt Semantiek gtt Logik Semantik Algebraic logic Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Nichtklassische Logik (DE-588)4197462-1 gnd rswk-swf Logik (DE-588)4036202-4 gnd rswk-swf Algebraische Methode (DE-588)4141841-4 gnd rswk-swf Klassische Logik (DE-588)4333219-5 gnd rswk-swf Vollständigkeit (DE-588)4284513-0 gnd rswk-swf Logik (DE-588)4036202-4 s Algebraische Methode (DE-588)4141841-4 s DE-604 Mathematische Logik (DE-588)4037951-6 s Klassische Logik (DE-588)4333219-5 s Vollständigkeit (DE-588)4284513-0 s Nichtklassische Logik (DE-588)4197462-1 s Hardegree, Gary M. Verfasser aut Oxford logic guides 41 (DE-604)BV000013997 41 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009400917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dunn, J. Michael 1941-2021 Hardegree, Gary M. Algebraic methods in philosophical logic Oxford logic guides Algebra gtt Logica gtt Logique algébrique Modale logica gtt Partiële orde gtt Semantiek gtt Logik Semantik Algebraic logic Mathematische Logik (DE-588)4037951-6 gnd Nichtklassische Logik (DE-588)4197462-1 gnd Logik (DE-588)4036202-4 gnd Algebraische Methode (DE-588)4141841-4 gnd Klassische Logik (DE-588)4333219-5 gnd Vollständigkeit (DE-588)4284513-0 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4197462-1 (DE-588)4036202-4 (DE-588)4141841-4 (DE-588)4333219-5 (DE-588)4284513-0 |
title | Algebraic methods in philosophical logic |
title_auth | Algebraic methods in philosophical logic |
title_exact_search | Algebraic methods in philosophical logic |
title_full | Algebraic methods in philosophical logic J. Michael Dunn and Gary M. Hardagree |
title_fullStr | Algebraic methods in philosophical logic J. Michael Dunn and Gary M. Hardagree |
title_full_unstemmed | Algebraic methods in philosophical logic J. Michael Dunn and Gary M. Hardagree |
title_short | Algebraic methods in philosophical logic |
title_sort | algebraic methods in philosophical logic |
topic | Algebra gtt Logica gtt Logique algébrique Modale logica gtt Partiële orde gtt Semantiek gtt Logik Semantik Algebraic logic Mathematische Logik (DE-588)4037951-6 gnd Nichtklassische Logik (DE-588)4197462-1 gnd Logik (DE-588)4036202-4 gnd Algebraische Methode (DE-588)4141841-4 gnd Klassische Logik (DE-588)4333219-5 gnd Vollständigkeit (DE-588)4284513-0 gnd |
topic_facet | Algebra Logica Logique algébrique Modale logica Partiële orde Semantiek Logik Semantik Algebraic logic Mathematische Logik Nichtklassische Logik Algebraische Methode Klassische Logik Vollständigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009400917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000013997 |
work_keys_str_mv | AT dunnjmichael algebraicmethodsinphilosophicallogic AT hardegreegarym algebraicmethodsinphilosophicallogic |