Modern challenges in quantum optics: selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Lecture notes in physics
575 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 405 S. Ill., graph. Darst. |
ISBN: | 3540419578 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013738609 | ||
003 | DE-604 | ||
005 | 20010809 | ||
007 | t | ||
008 | 010515s2001 gw |||| 10||| eng d | ||
016 | 7 | |a 961224606 |2 DE-101 | |
020 | |a 3540419578 |9 3-540-41957-8 | ||
035 | |a (OCoLC)46777508 | ||
035 | |a (DE-599)BVBBV013738609 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-703 |a DE-19 |a DE-706 |a DE-11 | ||
050 | 0 | |a QC446.15 | |
082 | 0 | |a 535 |2 21 | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a UH 5100 |0 (DE-625)145654: |2 rvk | ||
245 | 1 | 0 | |a Modern challenges in quantum optics |b selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 |c M. Orszag ; J. C. Retamal (ed) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XXIII, 405 S. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v 575 | |
490 | 0 | |a Physics and astronomy online library | |
650 | 4 | |a Quantum optics |v Congresses | |
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Santiago de Chile |2 gnd-content | |
689 | 0 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Orszag, Miguel |d 1944- |e Sonstige |0 (DE-588)121053679 |4 oth | |
711 | 2 | |a International Meeting in Quantum Optics |n 1 |d 2000 |c Santiago de Chile |j Sonstige |0 (DE-588)10018454-6 |4 oth | |
830 | 0 | |a Lecture notes in physics |v 575 |w (DE-604)BV000003166 |9 575 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009390964&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009390964 |
Datensatz im Suchindex
_version_ | 1804128557528514560 |
---|---|
adam_text | TABLE OF CONTENTS PART I TRAPPED IONS AND CAVITY QED GENERATION OF FOCK
STATES IN THE ONE-ATOM MASER H. WALTHER
........................................................ 3 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 3 2 THE ONE-ATOM MASER AND THE
GENERATION OF FOCK-STATES USING TRAPPING STATES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 4 3 DYNAMICAL PREPARATION OF NUMBER
STATES IN A CAVITY . . . . . . . . . . . . . . . 7 4 PREPARATION OF FOCK
STATES ON DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 12 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 13 COHERENT MANIPULATION OF TWO TRAPPED IONS
WITH BICHROMATIC LIGHT E. SOLANO, R.L. DE MATOS FILHO, N. ZAGURY
............................ 14 1 INTRODUCTION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 14 2 DISPERSIVE INTERACTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 15 2.1 THE MODEL . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 15 2.2 BELL STATES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 RELIABLE
TELEPORTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 19 2.4 WIGNER FUNCTION OF THE COLLECTIVE MOTION . . .
. . . . . . . . . . . . . . . . . . . 21 3 SELECTIVE INTERACTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 22 4 RESONANT INTERACTION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 CONDITIONAL
VIBRATIONAL DISPLACEMENT . . . . . . . . . . . . . . . . . . . . . . . .
. 25 4.2 MOTIONAL SCHR¨ ODINGER*S CAT STATES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 26 4.3 MOTIONAL SQUEEZED STATES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5
CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 27 6 ACKNOWLEDGMENTS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 27 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
QUANTUM NONDEMOLITION MEASUREMENT AND QUANTUM STATE MANIPULATION IN TWO
DIMENSIONAL TRAPPED ION W. KAIGE, S. MANISCALCO, A. NAPOLI, A. MESSINA
....................... 29 X TABLE OF CONTENTS 1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 29 2 DESCRIPTION OF THE MODEL . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3
PROPERTIES OF THE MODEL . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 32 4 QND MEASUREMENT OF VIBRATIONAL
QUANTA . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 QUANTUM
STATE MANIPULATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 36 5.1 GENERATION OF A BIMODAL FOCK STATE . . . . . .
. . . . . . . . . . . . . . . . . . . . 36 5.2 GENERATION OF ENTANGLED
SUPERPOSITION OF FOCK STATES . . . . . . . . . . . 38 5.3 GENERATION OF
A PAIR COHERENT STATE . . . . . . . . . . . . . . . . . . . . . . . . .
. . 39 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 41 REFERENCES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 41 PHONON-PHOTON TRANSLATION WITH A
TRAPPED ION IN A CAVITY E. MASSONI, M. ORSZAG
............................................ 43 1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 43 2 THE MODEL FOR A PHONON-PHOTON TRANSLATOR . . .
. . . . . . . . . . . . . . . . . . . . 44 3 INFORMATION TRANSFER . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 46 4 NUMERICAL SIMULATION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 49 5 DISCUSSION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 52 6 THE MODEL FOR AN ION TRAP LASER
PRODUCING TRANSFER OF SQUEEZING . . . . 53 7 SEMICLASSICAL APROXIMATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 56 8 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 58 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 61 PART II QUANTUM INTERFERENCE,
ENTANGLEMENT, DECOHERENCE AND QUANTUM COMPUTING DECOHERENCE, POINTER
ENGINEERING AND QUANTUM STATE PROTECTION A.R.R. CARVALHO, P. MILMAN,
R.L. DE MATOS FILHO, L. DAVIDOVICH ....... 65 1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 65 2 STRATEGY FOR QUANTUM STATE PROTECTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . 66 3 APPLICATION TO A TRAPPED
ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 67 3.1 HAMILTONIAN OF THE SYSTEM . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 67 3.2 MASTER EQUATION FOR THE
CENTER-OF-MASS MOTION . . . . . . . . . . . . . . . . . 68 3.3 EFFECT OF
RANDOM FIELDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 70 3.4 PROTECTION OF SUPERPOSITIONS OF FOCK STATES . . .
. . . . . . . . . . . . . . . . . 72 3.5 PROTECTION OF A QUBIT . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 PROTECTION OF APPROXIMATE PHASE EIGENSTATES . . . . . . . . . . . .
. . . . . . . 74 3.7 SUPERPOSITIONS OF COHERENT STATES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 74 3.8 PROTECTION OF SQUEEZED
STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76 4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 76 REFERENCES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 78 TABLE OF CONTENTS XI HIGH EFFICIENCY IN
DETECTION OF PHOTONIC QUBITS K.M. GHERI, C. SAAVEDRA
........................................... 80 1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 80 2 MODE STRUCTURE OF A SYSTEM OF TWO-CAVITIES . .
. . . . . . . . . . . . . . . . . . . . . 81 3 PHOTON WAVEPACKET
ABSORPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 84 4 GENERATION OF PHOTONIC QUBITS WITH THREE-LEVEL * ATOMS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5 SUMMARY AND FURTHER APPLICATIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 92 REFERENCES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 94 MACROSCOPIC ENTANGLEMENT AND RELATIVE PHASE G. NIENHUIS
....................................................... 95 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 95 2 SINGLE HISTORIES WITH
ARBITRARY DETECTION EFFICIENCY . . . . . . . . . . . . . . . . . 96 2.1
PERFECT DETECTION EFFICIENCY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 96 2.2 IMPERFECT DETECTION EFFICIENCY . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3 SINGLE BOSON
MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 98 3.1 ARBITRARY STATE . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2 FIXED
AMPLITUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 100 4 MASTER EQUATION FOR TWO BOSON MODES . . .
. . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 TWO
REPRESENTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 101 4.2 CORRELATIONS CREATED BY OBSERVATION . .
. . . . . . . . . . . . . . . . . . . . . . . . 102 5 INITIAL STATES
WITH FIXED AMPLITUDES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 103 5.1 SEPARATION OF TOTAL NUMBER AND RELATIVE PHASE . . . .
. . . . . . . . . . . . 103 5.2 COHERENT STATES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3
UNIFORM PHASE DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 105 6 CONCLUSIONS. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
108 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DECOHERENCE
EFFECTS OF MOTION-INDUCED RADIATION P.A. MAIA NETO, D.A.R. DALVIT
..................................... 110 1 INTRODUCTION AND BRIEF
SUMMARY OF DECOHERENCE THEORY . . . . . . . . . . . . 110 2 DYNAMICAL
CASIMIR EFFECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 114 3 DECOHERENCE AND THE CASIMIR EFFECT . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 116 4 CONCLUSION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 122 REFERENCES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 123 CONTROL OF COLD ATOMIC COLLISIONS BY MULTIPARTICLE
ENTANGLEMENT AND A MODIFIED VACUUM IN CAVITY QED J.I. KIM, R.B.B.
SANTOS, P. NUSSENZWEIG ............................. 125 1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 125 2 COLD COLLISIONS AND CAVITY QED . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 2.1
RADIATIVE ESCAPE COLLISIONS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 126 XII TABLE OF CONTENTS 2.2 CAVITY QED . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 128 3 COLLISIONAL DYNAMICS IN A CAVITY . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 129 3.1 MULTIPARTICLE
ENTANGLEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 129 3.2 CONTROL OF COLD COLLISIONS BY A MODIFIED VACUUM . . . .
. . . . . . . . . . . 131 3.3 COLLECTIVE DECAY RATE . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4
TRAP-LOSS PROBABILITIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 134 3.5 ORDERS OF MAGNITUDE . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 136 REFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 136 DECOHERENCE EVOLUTION OF A HARMONIC
OSCILLATOR J.C. RETAMAL
...................................................... 138 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 138 2 STABLE QUANTUM STATES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 139 3 THE ONSET OF UNSTABILITIES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 141 4 ANALYTICAL SOLUTIONS
FOR THE LINEAR ENTROPY . . . . . . . . . . . . . . . . . . . . . . . .
145 4.1 A RESERVOIR AT A FINITE TEMPERATURE . . . . . . . . . . . . . .
. . . . . . . . . . . . . 150 4.2 FINITE TEMPERATURE ENTROPY FOR A
COHERENT STATE . . . . . . . . . . . . . . . . 151 4.3 FINITE
TEMPERATURE ENTROPY FOR A SCHRODINGER CAT . . . . . . . . . . . . . .
153 5 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 155 6 ACKNOWLEDGMENTS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 156 REFERENCES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
156 PART III NON-LINEAR OPTICS, MATTER WAVES ATOMIC SQUEEZING AND
ENTANGLEMENT FROM BOSE*EINSTEIN CONDENSATES H. PU, M.G. MOORE, P.
MEYSTRE ..................................... 161 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 161 2 ENTANGLED ATOMIC BEAMS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3 DICKE
STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 167 4 ATOM-PHOTON ENTANGLEMENT . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 175 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 176 ATOMIC COHERENCE EFFECTS IN
DOPPLER-BROADENED THREE-LEVEL SYSTEMS WITH STANDING-WAVE DRIVE F. SILVA,
J. MOMPART, V. AHUFINGER, R. CORBAL´ AN ....................... 177 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 177 2 SEMICLASSICAL DENSITY
MATRIX ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 180 3 DRESSED-ATOM ANALYSIS. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 182 4 ELECTROMAGNETICALLY
INDUCED TRANSPARENCY. . . . . . . . . . . . . . . . . . . . . . . . .
185 TABLE OF CONTENTS XIII 5 AMPLIFICATION WITHOUT INVERSION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 188 REFERENCES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 193 FREQUENCY UP-CONVERSION TO THE
VACUUM ULTRA-VIOLET IN COHERENTLY PREPARED MEDIA J.P. MARANGOS, I. KU¸
CUKKARA, M. ANSCOMBE ........................... 195 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 195 2 REVIEW OF PREVIOUS WORK ON EIT ENHANCED
NON-LINEAR MIXING . . . . . . . 199 3 THEORETICAL TREATMENT OF EIT
ENHANCED FOUR-WAVE MIXING IN KR . . . . 201 4 EXPERIMENTAL INVESTGATION
OF EIT ENHANCED FOUR-WAVE MIXING IN KR . 203 4.1 EXPERIMENTAL SYSTEM AND
RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 206 5 FURTHER DEVELOPMENTS AND
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 210 OPTICAL LATTICE
DYNAMICS AND SCATTERING PROCESSES RESULTING FROM DIPOLE-DIPOLE
INTERACTION A. GUZM´ AN, J. ZAPATA
.............................................. 212 1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 212 2 ATOMIC STATES IN OPTICAL LATTICES. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 3 THE
DIPOLE-DIPOLE INTERACTION IN AN OPTICAL LATTICE . . . . . . . . . . . .
. . . . 217 4 HOPPING WITHIN THE WANNIER REPRESENTATION . . . . . . . .
. . . . . . . . . . . . . . 219 5 ATOM-ATOM DIFFRACTION IN 1D OPTICAL
LATTICES . . . . . . . . . . . . . . . . . . . . . 220 6 SUMMARY AND
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 225 REFERENCES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
225 PART IV QUANTUM OPTICS AND APPLICATIONS TIME DELAY AND TUNNELING
H.M. NUSSENZWEIG ................................................. 229 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 229 2 THE EISENBUD-WIGNER TIME
DELAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
229 3 TUNNELING TIME AS GROUP DELAY . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 230 3.1 CRITIQUE OF TUNNELING TIME AS
GROUP DELAY . . . . . . . . . . . . . . . . . . . . . 231 4 THE LARMOR
TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 231 5 STATIONARY DWELL TIME . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.1
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 233 6 OTHER APPROACHES TO TUNNELING
TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.1
MODULATION OF THE BARRIER OR OF THE INCIDENT WAVE . . . . . . . . . . .
. . . 233 6.2 CONDITIONAL DWELL TIME . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 233 6.3 PATH INTEGRALS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 234 6.4 CRITIQUE OF THE *FEYNMAN* APPROACH . . . . . . . . . . . .
. . . . . . . . . . . . . 234 XIV TABLE OF CONTENTS 7 AVERAGE WAVE
PACKET DWELL TIME . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 235 8 ONE-DIMENSIONAL QUANTUM SCATTERING THEORY . . . . . . .
. . . . . . . . . . . . . . 236 8.1 THE TIME DELAY MATRIX . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.2
NEW BASIS FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 237 9 THE AVERAGE ONE-DIMENSIONAL WAVE
PACKET DWELL TIME . . . . . . . . . . . . 238 9.1 AVERAGE
ONE-DIMENSIONAL DWELL TIME FOR A SYMMETRIC POTENTIAL . . . 239 10
RECTANGULAR POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 240 10.1 AVERAGE DWELL TIME IN
TUNNELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11 MAIN PROBLEMS WITH PREVIOUS TREATMENTS . . . . . . . . . . . . . . .
. . . . . . . . . . 241 12 TEN GOOD FEATURES OF THE AVERAGE DWELL TIME .
. . . . . . . . . . . . . . . . . . . . 241 REFERENCES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 242 GIANT INTENSITY-INTENSITY CORRELATIONS AND
QUANTUM INTERFERENCE IN A DRIVEN THREE-LEVEL ATOM S. SWAIN, Z. FICEK
................................................. 244 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 244 2 THE THREE-LEVEL MODEL: BOTH TRANSITIONS
EXCITED . . . . . . . . . . . . . . . . . . 246 2.1 SECOND-ORDER
CORRELATION FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . .
. . 247 2.2 DISTINGUISHABLE PHOTONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 249 2.3 INDISTINGUISHABLE PHOTONS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2.4 INTERPRETATION OF THE RESULTS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 251 3 SINGLE-TRANSITION EXCITATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 3.1
SUPERPOSITION DRESSED STATES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 255 4 CONCLUSIONS. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
259 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 259 A CAVITY QED
TEST OF QUANTUM MECHANICS Z. FICEK, S. SWAIN
................................................. 262 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 262 2 THE EIGENSTRUCTURE OF THE DRIVEN
TWO-LEVEL ATOM IN A CAVITY . . . . . . . 264 3 MASTER EQUATION OF THE
SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 266 4 THE AUTLER-TOWNES ABSORPTION SPECTRUM . . . . . . . . . . . .
. . . . . . . . . . . . . . 268 4.1 POPULATION OF THE UNDRIVEN LEVEL . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 268 4.2 POPULATION
OF THE DRESSED STATES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 270 5 AUTLER-TOWNES SPECTRA . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 271 5.1 FIXED NUMBER OF
PHOTONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 271 5.2 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 273 6 SUMMARY. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 277 REFERENCES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 277 THE METHOD OF QUANTUM JUMPS AND QUANTUM WHITE W. VON WALDENFELS
................................................. 279 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 279 TABLE OF CONTENTS XV 2 THE MASTER EQUATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 281 3 THE QUANTUM JUMP METHOD . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 281 4 QUANTUM WHITE NOISE
INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 285 5 THE TWO LEVEL ATOM . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 286 6 THE OSCILLATOR IN AN
ATOMIC HEAT BATH . . . . . . . . . . . . . . . . . . . . . . . . . . .
290 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 293 QUANTUM ORBITS
IN INTENSE-LASER ATOM PHYSICS R. KOPOLD, W. BECKER
.............................................. 294 1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 294 2 THE S MATRIX FOR IONIZATION . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 2.1
GENERAL FORMALISM . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 296 2.2 APPROXIMATION BY QUANTUM ORBITS . .
. . . . . . . . . . . . . . . . . . . . . . . . . 299 2.3 QUANTUM ORBITS
AND THE SIMPLE-MAN MODEL . . . . . . . . . . . . . . . . . . . 300 3
RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 302 3.1 SPECTRA FOR LINEAR
POLARIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 302 3.2 SPECTRA FOR ELLIPTICAL POLARIZATION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 302 3.3 ANGULAR DISTRIBUTIONS FOR
ELLIPTICAL POLARIZATION . . . . . . . . . . . . . . . . 303 4 COMPARISON
TO EXPERIMENTAL DATA AND CONCLUSIONS . . . . . . . . . . . . . . . . .
307 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 308 MICROMASER
DYNAMICS BEYOND THE ROTATING-WAVE APPROXIMATION F. DE ZELA
........................................................ 310 1
INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 310 2 THE MICROMASER . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
316 3 THE ROTATING AND THE COUNTER-ROTATING WAVE APPROXIMATIONS . . . .
. . . 321 4 DIAGONALIZATION OF THE RABI HAMILTONIAN BY CONTINUED
FRACTIONS . . . . . 323 5 TRANSITION PROBABILITIES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 6 THE
STEADY-STATE PHOTON DISTRIBUTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 327 7 THE ATOMIC INVERSION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 8 TRAPPING
STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 332 9 CONCLUSIONS. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 335 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 WHAT IS
A QUANTIZED MODE OF A LEAKY CAVITY? S.M. DUTRA, G. NIENHUIS
............................................ 338 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 338 2 OPEN SYSTEMS IN QUANTUM MECHANICS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 339 2.1 QUANTUM
DISSIPATION AND THE CLASSICAL LIMIT . . . . . . . . . . . . . . . . . .
. 340 3 WHAT IS A MODE OF A LEAKY CAVITY? . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 342 3.1 THE CLASSICAL ANSWER . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 3.2
QUASIMODES IN THE QUANTUM THEORY . . . . . . . . . . . . . . . . . . . .
. . . . . . 344 XVI TABLE OF CONTENTS 4 A SIMPLE MODEL OF A LEAKY CAVITY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 5
FOX-LI MODES AS NATURAL MODES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 347 5.1 STURM-LIOUVILLE WITH A TWIST . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 348 6 QUANTUM THEORY .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 350 7 CONCLUSIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 352 THE QUANTUM JUMPS
APPROACH FOR INFINITELY MANY STATES D. SPEHNER, J. BELLISSARD
............................................ 355 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 355 2 THE MODEL . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
2.1 THE STOCHASTIC SCHEME . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 358 2.2 EXAMPLES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
3 CASE OF INFINITELY MANY STATES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 362 4 EQUIVALENCE WITH THE MASTER EQUATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . 366 4.1
DECOMPOSITION OF THE GENERATOR L INTO A JUMP AND A DAMPING PARTS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 366 4.2 AVERAGE OVER
QUANTUM TRAJECTORIES . . . . . . . . . . . . . . . . . . . . . . . . . .
. 367 4.3 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 369 5 STOCHASTIC HAMILTONIANS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 369 6 COMPARISON WITH OTHER STOCHASTIC SCHEMES . . . . . . . . .
. . . . . . . . . . . . . . 371 6.1 QUANTUM JUMP SCHEMES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 6.2 QUANTUM
DIFFUSION SCHEMES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 373 6.3 COMPARISON WITH THE MODEL OF SECT. 2 . . . . . . . .
. . . . . . . . . . . . . . . . 374 7 CONCLUSION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 374 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 PART V
SHORT CONTRIBUTIONS COHERENT POPULATION TRAPPING AND RESONANCE
FLUORESCENCE IN A CLOSED FOUR-LEVEL SYSTEM M.L. LADR´ ON DE GUEVARA
............................................ 379 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 379 2 MODEL . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 380 3 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 380 REFERENCES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 383 DYNAMICS OF BOSE*EINSTEIN
CONDENSATION FOR NEGATIVE SCATTERING LENGTH V.S. FILHO, A. GAMMAL, L.
TOMIO, T. FREDERICO ....................... 384 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 388 TABLE OF CONTENTS XVII QUANTUM GATES WITH
A SELECTIVE INTERACTION E. SOLANO, M. FRAN¸ CA SANTOS, P. MILMAN
............................. 389 REFERENCES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 393 MEASURING ENTANGLEMENT THROUGH THE WIGNER FUNCTION M.
FRAN¸ CA SANTOS, L. DAVIDOVICH .................................... 394
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 394 2 ENTANGLEMENT IN THE
TWO-MODE WIGNER FUNCTION. . . . . . . . . . . . . . . . . . . 395 3
CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 397 REFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 397 REFLECTION OF A SLOW ATOM BY A CAVITY A.
DELGADO, L. ROA, C. SAAVEDRA ..................................... 399 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 399 2 THE MODEL . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 400 3 SUMMARY. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 405
|
any_adam_object | 1 |
author_GND | (DE-588)121053679 |
building | Verbundindex |
bvnumber | BV013738609 |
callnumber-first | Q - Science |
callnumber-label | QC446 |
callnumber-raw | QC446.15 |
callnumber-search | QC446.15 |
callnumber-sort | QC 3446.15 |
callnumber-subject | QC - Physics |
classification_rvk | UD 8220 UH 5100 |
ctrlnum | (OCoLC)46777508 (DE-599)BVBBV013738609 |
dewey-full | 535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535 |
dewey-search | 535 |
dewey-sort | 3535 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01903nam a22004458cb4500</leader><controlfield tag="001">BV013738609</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010809 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010515s2001 gw |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">961224606</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540419578</subfield><subfield code="9">3-540-41957-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46777508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013738609</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC446.15</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5100</subfield><subfield code="0">(DE-625)145654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern challenges in quantum optics</subfield><subfield code="b">selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000</subfield><subfield code="c">M. Orszag ; J. C. Retamal (ed)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 405 S. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">575</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum optics</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Santiago de Chile</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orszag, Miguel</subfield><subfield code="d">1944-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121053679</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">International Meeting in Quantum Optics</subfield><subfield code="n">1</subfield><subfield code="d">2000</subfield><subfield code="c">Santiago de Chile</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)10018454-6</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">575</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">575</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009390964&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009390964</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2000 Santiago de Chile gnd-content |
genre_facet | Konferenzschrift 2000 Santiago de Chile |
id | DE-604.BV013738609 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:51:08Z |
institution | BVB |
institution_GND | (DE-588)10018454-6 |
isbn | 3540419578 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009390964 |
oclc_num | 46777508 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-706 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM DE-706 DE-11 |
physical | XXIII, 405 S. Ill., graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics Physics and astronomy online library |
spelling | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 M. Orszag ; J. C. Retamal (ed) Berlin [u.a.] Springer 2001 XXIII, 405 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics 575 Physics and astronomy online library Quantum optics Congresses Quantenoptik (DE-588)4047990-0 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2000 Santiago de Chile gnd-content Quantenoptik (DE-588)4047990-0 s DE-604 Orszag, Miguel 1944- Sonstige (DE-588)121053679 oth International Meeting in Quantum Optics 1 2000 Santiago de Chile Sonstige (DE-588)10018454-6 oth Lecture notes in physics 575 (DE-604)BV000003166 575 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009390964&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 Lecture notes in physics Quantum optics Congresses Quantenoptik (DE-588)4047990-0 gnd |
subject_GND | (DE-588)4047990-0 (DE-588)1071861417 |
title | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 |
title_auth | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 |
title_exact_search | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 |
title_full | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 M. Orszag ; J. C. Retamal (ed) |
title_fullStr | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 M. Orszag ; J. C. Retamal (ed) |
title_full_unstemmed | Modern challenges in quantum optics selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 M. Orszag ; J. C. Retamal (ed) |
title_short | Modern challenges in quantum optics |
title_sort | modern challenges in quantum optics selected papers of the first international meeting in quantum optics held in santiago chile 13 16 august 2000 |
title_sub | selected papers of the First International Meeting in Quantum Optics, held in Santiago, Chile, 13 - 16 August 2000 |
topic | Quantum optics Congresses Quantenoptik (DE-588)4047990-0 gnd |
topic_facet | Quantum optics Congresses Quantenoptik Konferenzschrift 2000 Santiago de Chile |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009390964&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT orszagmiguel modernchallengesinquantumopticsselectedpapersofthefirstinternationalmeetinginquantumopticsheldinsantiagochile1316august2000 AT internationalmeetinginquantumopticssantiagodechile modernchallengesinquantumopticsselectedpapersofthefirstinternationalmeetinginquantumopticsheldinsantiagochile1316august2000 |