Optimal and suboptimal control of partial differential equations: augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Graz
Fachbibl. für Mathematik, Univ.
2001
|
Schriftenreihe: | Grazer mathematische Berichte
343 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 131 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013699924 | ||
003 | DE-604 | ||
005 | 20020704 | ||
007 | t | ||
008 | 010427s2001 |||| 00||| eng d | ||
035 | |a (OCoLC)634766186 | ||
035 | |a (DE-599)BVBBV013699924 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-355 |a DE-703 | ||
084 | |a MAT 912f |2 stub | ||
084 | |a MAT 350f |2 stub | ||
100 | 1 | |a Volkwein, Stefan |d 1966- |e Verfasser |0 (DE-588)118138529 |4 aut | |
245 | 1 | 0 | |a Optimal and suboptimal control of partial differential equations |b augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition |c Stefan Volkwein |
264 | 1 | |a Graz |b Fachbibl. für Mathematik, Univ. |c 2001 | |
300 | |a VI, 131 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grazer mathematische Berichte |v 343 | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sequenzielle quadratische Optimierung |0 (DE-588)4451045-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sequenzielle quadratische Optimierung |0 (DE-588)4451045-7 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Grazer mathematische Berichte |v 343 |w (DE-604)BV008016881 |9 343 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009362743&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009362743 |
Datensatz im Suchindex
_version_ | 1804128515826647040 |
---|---|
adam_text | Contents
1
Preface
1
1.1 Motivation.................................. 1
1.2
Notations
.................................. 2
2
The augmented Lagrange-SQP method
4
2.1
Introduction
................................. 4
2.2
The augmented Lagrange-SQP algorithm
................. 7
2.3
The Newton
Lagrange
multiplier update
................. 12
2.4
The Lipschitz-continuous
Lagrange
multiplier update
.......... 15
2.4.1
Local convergence results
...................... 15
2.4.2
Problems with representation for the null space of the linearized
constraint
.............................. 18
2.5 Affine
invariant convergence analysis
................... 20
2.5.1 Affine
invariance..........................
20
2.5.2
Affine
invariant convergence theory
................ 22
2.5.3
Inexact augmented Lagrange-SQP methods
........... 24
2.6
Mesh-independence
............................. 26
2.6.1
Approximation of the infinite dimensional algorithm
....... 27
2.6.2
Convergence results for Algorithm
2.6............... 30
2.6.3
Convergence results for Algorithm
2.7............... 33
2.6.4
Asymptotic mesh-independence
.................. 35
2.6.5
Strong mesh-independence
..................... 36
2.7
Applications
................................. 36
2.7.1
Optimal control problems for the Burgers equation
....... 36
2.7.2
Optimal control of a phase-field model
.............. 52
2.7.3
Parameter identification problems
................. 56
2.8
Lagrange-Newton-SQP and generalized Newton s method
........ 59
2.8.1
The optimal control problem
.................... 60
2.8.2
The Lagrange-Newton-SQP method
................ 64
2.8.3
Generalized equation and Newton s method
........... 65
2.8.4
Strong regularity
.......................: . . 66
2.8.5
The linear-quadratic optimal control problem
.......... 68
2.8.6
The primal-dual active set algorithm
............... 70
3
Suboptimal
control using POD
72
3.1
Introduction
................................. 72
3.2
Proper orthogonal decomposition (POD)
................. 74
3.2.1
Abstract dynamical system
.................... 74
3.2.2
Computation of the POD basis
.................. 75
3.3
POD and singular value decomposition
.................. 79
3.4
Error estimates for
semilinear
problems
.................. 83
3.4.1
Equations with locally Lipschitz-continuous nonlinearity
.... 83
3.4.2
Error estimates for a model describing the laser hardening of steel
85
3.5
Error estimates for a general equation in fluid dynamics
......... 88
3.5.1 Case X
=
V
............................. 89
3.5.2
Case X
=
Я
............................. 94
3.6
Applications
................................. 94
3.6.1
Optimal control of the Burgers equation
............. 94
3.6.2
Optimal control of
a phase-fíeld
model
.............. 99
3.6.3
Nonlinear boundary control of a heat equation
.......... 99
3.6.4
Control of laser surface hardening
................. 103
3.6.5
Numerical experiments for the control of laser surface hardening
106
3.6.6
Numerical solution of the state equations
............. 110
|
any_adam_object | 1 |
author | Volkwein, Stefan 1966- |
author_GND | (DE-588)118138529 |
author_facet | Volkwein, Stefan 1966- |
author_role | aut |
author_sort | Volkwein, Stefan 1966- |
author_variant | s v sv |
building | Verbundindex |
bvnumber | BV013699924 |
classification_tum | MAT 912f MAT 350f |
ctrlnum | (OCoLC)634766186 (DE-599)BVBBV013699924 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01764nam a2200397 cb4500</leader><controlfield tag="001">BV013699924</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020704 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010427s2001 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634766186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013699924</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 912f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Volkwein, Stefan</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118138529</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal and suboptimal control of partial differential equations</subfield><subfield code="b">augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition</subfield><subfield code="c">Stefan Volkwein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Graz</subfield><subfield code="b">Fachbibl. für Mathematik, Univ.</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 131 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grazer mathematische Berichte</subfield><subfield code="v">343</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sequenzielle quadratische Optimierung</subfield><subfield code="0">(DE-588)4451045-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sequenzielle quadratische Optimierung</subfield><subfield code="0">(DE-588)4451045-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grazer mathematische Berichte</subfield><subfield code="v">343</subfield><subfield code="w">(DE-604)BV008016881</subfield><subfield code="9">343</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009362743&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009362743</subfield></datafield></record></collection> |
id | DE-604.BV013699924 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:50:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009362743 |
oclc_num | 634766186 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 |
physical | VI, 131 S. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Fachbibl. für Mathematik, Univ. |
record_format | marc |
series | Grazer mathematische Berichte |
series2 | Grazer mathematische Berichte |
spelling | Volkwein, Stefan 1966- Verfasser (DE-588)118138529 aut Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition Stefan Volkwein Graz Fachbibl. für Mathematik, Univ. 2001 VI, 131 S. txt rdacontent n rdamedia nc rdacarrier Grazer mathematische Berichte 343 Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 s Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 Sequenzielle quadratische Optimierung (DE-588)4451045-7 s Grazer mathematische Berichte 343 (DE-604)BV008016881 343 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009362743&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Volkwein, Stefan 1966- Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition Grazer mathematische Berichte Partielle Differentialgleichung (DE-588)4044779-0 gnd Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd Optimale Kontrolle (DE-588)4121428-6 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4451045-7 (DE-588)4121428-6 |
title | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition |
title_auth | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition |
title_exact_search | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition |
title_full | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition Stefan Volkwein |
title_fullStr | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition Stefan Volkwein |
title_full_unstemmed | Optimal and suboptimal control of partial differential equations augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition Stefan Volkwein |
title_short | Optimal and suboptimal control of partial differential equations |
title_sort | optimal and suboptimal control of partial differential equations augmented lagrange sqp methods and reduced order modeling with proper orthogonal decomposition |
title_sub | augmented Lagrange-SQP methods and reduced-order modeling with proper orthogonal decomposition |
topic | Partielle Differentialgleichung (DE-588)4044779-0 gnd Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd Optimale Kontrolle (DE-588)4121428-6 gnd |
topic_facet | Partielle Differentialgleichung Sequenzielle quadratische Optimierung Optimale Kontrolle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009362743&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008016881 |
work_keys_str_mv | AT volkweinstefan optimalandsuboptimalcontrolofpartialdifferentialequationsaugmentedlagrangesqpmethodsandreducedordermodelingwithproperorthogonaldecomposition |