Handbook of continuum mechanics: general concepts, thermoelasticity
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Physics and astronomy online library
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 803 S. Ill., graph. Darst. 2 Beil. |
ISBN: | 3540414436 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV013694292 | ||
003 | DE-604 | ||
005 | 20150903 | ||
007 | t | ||
008 | 010417s2001 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 960935291 |2 DE-101 | |
020 | |a 3540414436 |9 3-540-41443-6 | ||
035 | |a (OCoLC)46456275 | ||
035 | |a (DE-599)BVBBV013694292 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-29T |a DE-1046 |a DE-706 |a DE-634 |a DE-91G | ||
050 | 0 | |a QA808.2 | |
082 | 0 | |a 531 |2 21 | |
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
084 | |a MTA 010f |2 stub | ||
084 | |a PHY 210f |2 stub | ||
100 | 1 | |a Salençon, Jean |d 1940- |e Verfasser |0 (DE-588)122726022 |4 aut | |
240 | 1 | 0 | |a Mécanique des milieux continus |
245 | 1 | 0 | |a Handbook of continuum mechanics |b general concepts, thermoelasticity |c Jean Salençon |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XIX, 803 S. |b Ill., graph. Darst. |e 2 Beil. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics and astronomy online library | |
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009358613&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009358613 |
Datensatz im Suchindex
_version_ | 1804128509701914624 |
---|---|
adam_text | CONTENTS I. MODELLING THE CONTINUUM ............................... 1 1
SCALE, MODEL, AND VALIDATION . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 7 2 CONCEPTS AND FORMULATION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 8 2.1 THE MAIN IDEA . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 8 2.2 FRAME OF REFERENCE AND
COORDINATE SYSTEM . . . . . . . . . 9 2.3 CONFIGURATIONS OF THE SYSTEM .
. . . . . . . . . . . . . . . . . . . . 10 2.4 MATERIAL FRAME
INDIFFERENCE . . . . . . . . . . . . . . . . . . . . . . . 11 3
LAGRANGIAN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 12 3.1 DEFINITION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 12 3.2 CONTINUITY HYPOTHESES . . .
. . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 WEAKENING OF
CONTINUITY HYPOTHESES. . . . . . . . . . . . . . . 15 3.4 PHYSICAL
INTERPRETATION OF THE LAGRANGIAN DESCRIPTION: PATHLINES . . . . . . . .
. . . 16 3.5 STREAKLINES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 16 3.6 PARTICLE VELOCITY . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 17 3.7 GENERALISED REFERENCE
CONFIGURATION . . . . . . . . . . . . . . . 17 4 EULERIAN DESCRIPTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 18 4.2 DETERMINING PATHLINES . . . . . . . . . . . . .
. . . . . . . . . . . . . . 19 4.3 STREAMLINES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 STEADY MOTIONS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5
SEMI-STEADY MOTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 22 4.6 NOTATION FOR VELOCITY . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 22 5 REMARKS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 23 SUMMARY OF MAIN
FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 27 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 28 II. DEFORMATION
............................................. 31 1 TRANSPORT,
TRANSFORMATION, AND DEFORMATION . . . . . . . . . . . . . . 37 2
CONVECTIVE TRANSPORT IN A HOMOGENEOUS TRANSFORMATION . . . . 38 2.1
HOMOGENEOUS TRANSFORMATION . . . . . . . . . . . . . . . . . . . . . 38
2.2 MATERIAL VECTOR AND CONVECTIVE TRANSPORT . . . . . . . . . . 39 2.3
TRANSPORT AND EXPANSION OF A VOLUME . . . . . . . . . . . . . 40 2.4
TRANSPORT OF AN ORIENTED SURFACE . . . . . . . . . . . . . . . . . . 42
VIII CONTENTS 3 DEFORMATION IN A HOMOGENEOUS TRANSFORMATION . . . . . .
. . . . . . 43 3.1 EXPANSION TENSOR . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 43 3.2 USING THE EXPANSION TENSOR . . . . . .
. . . . . . . . . . . . . . . . 45 3.3 GREEN*LAGRANGE STRAIN TENSOR . .
. . . . . . . . . . . . . . . . . . 48 3.4 POLAR FACTORISATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 50 4 DEFORMATION OF
THE CONTINUUM: GENERAL CASE . . . . . . . . . . . . . 51 4.1 BASIC
PRINCIPLE: THE HOMOGENEOUS TANGENT MAP . . . . 51 4.2 TRANSPORT
EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 DEFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 54 4.4 DISPLACEMENT . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 54 4.5 POLAR FACTORISATION AND RIGID
BODY TRANSFORMATION. . 55 4.6 FRAME INDIFFERENCE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 56 5 INFINITESIMAL
TRANSFORMATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
57 5.1 DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 57 5.2 LINEARISED STRAIN TENSOR . . . . . . . . .
. . . . . . . . . . . . . . . . 57 5.3 GRADIENT OF A TENSOR FIELD ON THE
CURRENT CONFIGURATION . . . . . . . . . . . . . . . . . . . . . 58 6
GEOMETRICAL COMPATIBILITY OF A LINEARISED STRAIN FIELD . . . . . 59 6.1
STATEMENT OF THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . .
59 6.2 COMPATIBILITY CONDITIONS . . . . . . . . . . . . . . . . . . . .
. . . . . 60 6.3 REMARKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 62 6.4 APPLICATION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 64 7 FINAL COMMENTS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 65 7.1 TRANSFORMATION AND DEFORMATION . . . . . . . . . . . . . . .
. . . 65 7.2 LAGRANGIAN PARAMETRISATION RELATIVE TO A GENERALISED
CONFIGURATION . . . . . . . . . . . . 65 7.3 PRACTICAL INVESTIGATION OF
STRAINS . . . . . . . . . . . . . . . . . . 66 SUMMARY OF MAIN FORMULAS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 71 III. KINEMATICS
.............................................. 81 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 87 2 LAGRANGIAN KINEMATICS OF THE CONTINUUM . . . . . . . . . . . .
. . . . . 87 2.1 CONVECTIVE TRANSPORT AND MATERIAL DERIVATIVE. . . . . .
. 87 2.2 LAGRANGIAN STRAIN RATE . . . . . . . . . . . . . . . . . . . .
. . . . . . 89 3 EULERIAN KINEMATICS OF THE CONTINUUM . . . . . . . . .
. . . . . . . . . . 90 3.1 MOTIVATION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 90 3.2 MATERIAL DERIVATIVE OF A
VECTOR . . . . . . . . . . . . . . . . . . . . 90 3.3 EULERIAN STRAIN
RATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4
USE OF THE STRAIN RATE TENSOR . . . . . . . . . . . . . . . . . . . . .
92 3.5 SPIN TENSOR. RATE OF VOLUME DILATATION . . . . . . . . . . . . 95
3.6 COMPARISON WITH LINEARISED STRAIN FOR INFINITESIMAL TRANSFORMATIONS
. . . . . . . . . . . . . . . . . . 98 3.7 GEOMETRICAL COMPATIBILITY OF
A STRAIN RATE FIELD . . . . 99 3.8 RIGID BODY MOTION . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 99 CONTENTS IX 3.9
WEAKFORMULATION OF GEOMETRICAL COMPATIBILITY . . . . 100 3.10
INFINITESIMAL TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . .
101 3.11 FRAME INDIFFERENCE . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 101 4 MATERIAL DERIVATIVES. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 102 4.1 MATERIAL DERIVATIVES
IN THE LAGRANGIAN DESCRIPTION . . 102 4.2 MATERIAL DERIVATIVES IN THE
EULERIAN DESCRIPTION . . . . . 103 4.3 MATERIAL DERIVATIVE OF A POINT
FUNCTION . . . . . . . . . . . . 104 4.4 MATERIAL DERIVATIVE OF A VOLUME
INTEGRAL . . . . . . . . . . . 105 4.5 MATERIAL DERIVATIVE OF A
CIRCULATION. . . . . . . . . . . . . . . . 115 4.6 MATERIAL DERIVATIVE
OF A FLUX . . . . . . . . . . . . . . . . . . . . . 116 5 CONSERVATION
OF MASS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 118 5.1 EQUATION OF CONTINUITY . . . . . . . . . . . . . . . . . . .
. . . . . . . . 118 5.2 INTEGRAL FORM . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 120 5.3 MATERIAL DERIVATIVE OF A
MASS INTEGRAL IN THE EULERIAN DESCRIPTION . . . . . . . . . . . . . . .
. . . . . . . . 120 SUMMARY OF MAIN FORMULAS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 122 EXERCISES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 126 IV. THE VIRTUAL WORK APPROACH TO THE MODELLING OF FORCES
............................... 133 1 THE PROBLEM OF MODELLING FORCES .
. . . . . . . . . . . . . . . . . . . . . . . 139 1.1 MODELLING FORCES
IN A SYSTEM OF MATERIAL POINTS . . . . . 139 1.2 THE VIRTUAL WORKMETHOD
. . . . . . . . . . . . . . . . . . . . . . . . 144 2 DUALISATION AND
VIRTUAL WORK FOR A SYSTEM OF MATERIAL POINTS . . . . . . . . . . . . . .
. . . . . . . . . . . . 144 2.1 SYSTEM COMPRISING A SINGLE MATERIAL
POINT . . . . . . . . . 144 2.2 SYSTEM COMPRISING SEVERAL MATERIAL
POINTS . . . . . . . . . 145 2.3 VIRTUAL VELOCITY, VIRTUAL MOTION AND
VIRTUAL WORK. . 147 2.4 STATEMENT OF THE PRINCIPLE OF VIRTUAL WORK . . .
. . . . . . 149 2.5 VIRTUAL MOTIONS IN RELATION TO THE MODELLING OF
FORCES . . . . . . . . . . . . . . . . . . . . . . . 149 3 VIRTUAL
WORKMETHOD FOR A SYSTEM OF MATERIAL POINTS . . . . . . 150 3.1
PRESENTATION OF THE VIRTUAL WORKMETHOD . . . . . . . . . . 150 3.2
EXAMPLE OF AN APPLICATION . . . . . . . . . . . . . . . . . . . . . . .
150 3.3 REMARKS ON THIS APPLICATION OF THE VIRTUAL WORKMETHOD . . . . .
. . . . . . . . . . . . . . . . . 154 3.4 GEOMETRICAL COMPATIBILITY OF *
* * IJ . SYSTEMS OF HINGED RODS . . . . . . . . . . . . . . . . . . . .
. . . . . . 154 4 THE VIRTUAL WORKMETHOD . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 156 4.1 GENERAL PRESENTATION OF THE METHOD .
. . . . . . . . . . . . . . 156 4.2 SUMMARY OF THE VIRTUAL WORKMETHOD .
. . . . . . . . . . . . 158 4.3 REMARKS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 159 4.4 CHANGE OF FRAME.
FRAME INDIFFERENCE . . . . . . . . . . . . . . 159 5 RIGID BODY MOTIONS.
DISTRIBUTORS AND WRENCHES . . . . . . . . . . . 160 5.1 DISTRIBUTORS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
X CONTENTS 5.2 WRENCHES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 161 5.3 RESTRICTION OF A LINEAR FORM
DEFINED ON A SPACE OF VIRTUAL MOTIONS TO THE RIGID BODY VIRTUAL MOTIONS
162 5.4 WRENCH OF A FORCE SYSTEM . . . . . . . . . . . . . . . . . . . .
. . . . 162 5.5 FIELDS OF DISTRIBUTORS AND WRENCHES. DIFFERENTIATION .
163 6 GENERAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 165 6.1 DEFINING THE SYSTEM AND ITS MOTIONS
. . . . . . . . . . . . . . . 165 6.2 VIRTUAL WORK . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 166 6.3 LAW OF MUTUAL
ACTIONS AND FUNDAMENTAL LAW OF DYNAMICS . . . . . . . . . . . . . . . .
166 6.4 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 167 7 MOMENTUM THEOREM. KINETIC ENERGY THEOREM . .
. . . . . . . . . . 168 7.1 DEFINITION OF THE SYSTEM AND ITS MOTIONS . .
. . . . . . . . . 168 7.2 WRENCH OF THE QUANTITIES OF ACCELERATION.
MOMENTUM WRENCH . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 168 7.3 CONSERVATION OF MOMENTUM. . . . . . . . . . . . . . . . . .
. . . . . 170 7.4 EULER*S THEOREM . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 171 7.5 KINETIC ENERGY THEOREM . . . . . . . .
. . . . . . . . . . . . . . . . . 172 7.6 DISCONTINUOUS REAL VELOCITY
FIELD. SHOCKWAVES . . . . . 173 8 LOOKING AHEAD . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 SUMMARY OF
MAIN FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 179 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 181 V. MODELLING FORCES
IN CONTINUUM MECHANICS .............. 183 1 STATEMENT OF THE PROBLEM . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2 SCALAR
FIELD MODEL OF INTERNAL FORCES. PRESSURE . . . . . . . . . . . . 190 2.1
VIRTUAL MOTIONS. VIRTUAL RATE OF WORKBY QUANTITIES OF ACCELERATION . .
190 2.2 VIRTUAL RATE OF WORKBY EXTERNAL FORCES . . . . . . . . . . . 191
2.3 VIRTUAL RATE OF WORKBY INTERNAL FORCES . . . . . . . . . . . . 194
2.4 EQUATIONS OF MOTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 195 2.5 RELEVANCE OF THE MODEL. PRESSURE FIELD . . . . . . . .
. . . . . 198 2.6 THE FUNDAMENTAL LAW OF DYNAMICS. . . . . . . . . . . .
. . . . 199 2.7 DISCONTINUOUS VIRTUAL VELOCITY FIELD . . . . . . . . . .
. . . . . 199 3 MODELLING INTERNAL FORCES BY A TENSOR FIELD. STRESSES .
. . . . . . 202 3.1 VIRTUAL MOTIONS. VIRTUAL RATES OF WORKBY QUANTITIES
OF ACCELERATION AND EXTERNAL FORCES. . . . . . . . . . . . . . . . 202
3.2 VIRTUAL RATE OF WORKBY INTERNAL FORCES . . . . . . . . . . . . 203
3.3 EQUATIONS OF MOTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 204 3.4 REMARKS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 206 3.5 CAUCHY STRESS TENSOR. STRESS
VECTOR . . . . . . . . . . . . . . . 208 3.6 MODELLING INTERNAL FORCES
WITHIN THE CONTINUUM USING THE STRESS VECTOR . . . . . . . . . . . . . .
. . . . . . . . . . . . 211 3.7 EXPLICIT FORMS OF THE EQUATIONS OF
MOTION . . . . . . . . . . 214 3.8 DISCONTINUOUS VIRTUAL VELOCITY FIELD
. . . . . . . . . . . . . . . 215 CONTENTS XI 3.9 DISCONTINUITIES IN THE
STRESS FIELD . . . . . . . . . . . . . . . . . 218 3.10 EULER*S THEOREM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 3.11
KINETIC ENERGY THEOREM . . . . . . . . . . . . . . . . . . . . . . . . .
223 3.12 RATE OF WORKBY DEFORMATION . . . . . . . . . . . . . . . . . .
. . . 224 3.13 GEOMETRICAL COMPATIBILITY REVISITED. A WEAKFORMULATION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 3.14
WEAKFORMULATION OF THE EQUATIONS OF MOTION . . . . . . 225 3.15 FRAME
INDIFFERENCE OF THE CAUCHY STRESS TENSOR . . . . . 226 4 LAGRANGIAN
FORMULATION OF STRESSES . . . . . . . . . . . . . . . . . . . . . . 226
4.1 PIOLA*KIRCHHOFF STRESS TENSOR . . . . . . . . . . . . . . . . . . .
. . 226 4.2 PIOLA*LAGRANGE STRESS TENSOR. EQUATIONS OF MOTION . . 230 5
REVIEW AND PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 232 5.1 MECHANICIST AND PHYSICIST . . . . . . . . . . .
. . . . . . . . . . . . . 232 5.2 SUMMARY OF RESULTS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 233 5.3 MICROPOLAR MEDIA . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 234 SUMMARY OF MAIN
FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 238 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 240 VI. LOCAL ANALYSIS OF
STRESSES ............................... 249 1 IMPLEMENTING THE NOTION
OF STRESS . . . . . . . . . . . . . . . . . . . . . . . 255 2 SOME
PRACTICAL DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 255 2.1 DIMENSIONS AND UNITS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 255 2.2 NORMAL STRESS AND SHEAR STRESS . . . . . .
. . . . . . . . . . . . . 256 2.3 SIGN CONVENTION. PHYSICAL
INTERPRETATION . . . . . . . . . . . 258 2.4 CAUCHY RECIPROCAL THEOREM .
. . . . . . . . . . . . . . . . . . . . . 258 2.5 CHANGE OF BASIS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 2.6
PRINCIPAL AXES. PRINCIPAL STRESSES . . . . . . . . . . . . . . . . . 262
2.7 INVARIANTS OF THE STRESS TENSOR. REPRESENTATION THEOREM . . . . . .
. . . . . . . . . . . . . . . . . . . 263 2.8 DEVIATORIC STRESS TENSOR.
. . . . . . . . . . . . . . . . . . . . . . . . . 265 3 MOHR
REPRESENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 266 3.1 MOHR REPRESENTATION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 266 3.2 MOHR CIRCLES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 267 3.3 DESCRIPTION OF
PRINCIPAL CIRCLES . . . . . . . . . . . . . . . . . . . 269 3.4
PRACTICAL CONSEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . .
. 271 3.5 EXAMPLES OF STRESS STATES . . . . . . . . . . . . . . . . . .
. . . . . . 271 4 YIELD CONDITIONS FOR ISOTROPIC MATERIALS . . . . . . .
. . . . . . . . . . . 274 4.1 PRESENTATION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 274 4.2 GENERAL PRINCIPLES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 4.3 TRESCA
YIELD CRITERION . . . . . . . . . . . . . . . . . . . . . . . . . . .
276 4.4 VON MISES YIELD CRITERION . . . . . . . . . . . . . . . . . . .
. . . . . 277 5 MATERIAL DERIVATIVE OF THE STRESS TENSOR . . . . . . . .
. . . . . . . . . . 278 5.1 MATERIAL DERIVATIVE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 278 5.2 INTRINSIC DERIVATIVE
(TRUESDELL RATE) . . . . . . . . . . . . . . . 279 5.3 COROTATIONAL
DERIVATIVE (JAUMANN RATE) . . . . . . . . . . . 280 XII CONTENTS SUMMARY
OF MAIN FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 282 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 283 VII.
THERMOELASTICITY ........................................ 295 1 FROM
EXPERIENCE TO A CONSTITUTIVE LAW . . . . . . . . . . . . . . . . . . .
301 2 EXPERIMENTAL OBSERVATIONS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 302 2.1 GENERALITIES. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 302 2.2 SIMPLE TENSION TEST .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 2.3 FURTHER
EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . 304 2.4
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 305 3 THERMODYNAMICS OF CONTINUOUS MEDIA . . . . . . . . .
. . . . . . . . . . 306 3.1 FIRST LAW: ENERGY EQUATION . . . . . . . . .
. . . . . . . . . . . . . 306 3.2 SECOND LAW: FUNDAMENTAL INEQUALITY . .
. . . . . . . . . . . . 311 3.3 LAGRANGIAN EXPRESSIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . 313 4 THERMOELASTIC CONSTITUTIVE LAWS
. . . . . . . . . . . . . . . . . . . . . . . . 315 4.1 ELASTICITY
HYPOTHESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.2 UNCONSTRAINED THERMOELASTICITY . . . . . . . . . . . . . . . . . . .
316 4.3 THERMOELASTICITY WITH INTERNAL CONSTRAINTS . . . . . . . . . 321
4.4 MATERIAL SYMMETRIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 324 4.5 ISOTROPIC THERMOELASTIC MATERIAL IN THE REFERENCE
CONFIGURATION . . . . . . . . . . . . . . . . . . . . 325 4.6 INTERNAL
CONSTRAINTS FROM THE EULERIAN STANDPOINT . . . 327 5 UNCONSTRAINED
LINEAR THERMOELASTICITY . . . . . . . . . . . . . . . . . . . 328 5.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 328 5.2 PHYSICAL LINEARISATION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 328 5.3 ISOTROPIC LINEAR THERMOELASTIC
MATERIAL . . . . . . . . . . . . 332 5.4 INFINITESIMAL TRANSFORMATION
AND GEOMETRICAL LINEARISATION . . . . . . . . . . . . . . . . . . . .
334 5.5 STABILITY OF THERMOELASTIC MATERIALS . . . . . . . . . . . . . .
. 340 5.6 TYPICAL VALUES FOR MATERIALS IN COMMON USE . . . . . . . 343
5.7 EXAMPLES OF ANISOTROPIC THERMOELASTIC MATERIALS. . . . 343 6
HISTORICAL PERSPECTIVE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 346 SUMMARY OF MAIN FORMULAS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 349 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 351 VIII. THERMOELASTIC PROCESSES AND EQUILIBRIUM
............... 361 1 QUASI-STATIC THERMOELASTIC PROCESSES. . . . . . .
. . . . . . . . . . . . . . 367 1.1 THE NEED FOR A CONSTITUTIVE LAW . .
. . . . . . . . . . . . . . . . 367 1.2 FORMULATING THE QUASI-STATIC
THERMOELASTIC PROBLEM 369 1.3 SOLVING THE QUASI-STATIC THERMOELASTIC
PROBLEM. . . . . 372 1.4 SOME EXAMPLES OF BOUNDARY CONDITIONS . . . . .
. . . . . . 374 2 LINEARISING THE QUASI-STATIC THERMOELASTIC PROCESS. .
. . . . . . . 376 2.1 LINEARISATION HYPOTHESES . . . . . . . . . . . . .
. . . . . . . . . . . . 376 2.2 THE PRINCIPLES OF LINEARISATION . . . .
. . . . . . . . . . . . . . . . 377 CONTENTS XIII 2.3 USUAL EQUATIONS
FOR LINEARISED THERMOELASTIC PROCESSES . . . . . . . . . . . . . 380 3
LINEARISED QUASI-STATIC THERMOELASTIC PROCESSES . . . . . . . . . . .
381 3.1 DECOUPLING THE HEAT PROBLEM . . . . . . . . . . . . . . . . . .
. . . 381 3.2 THERMOELASTIC EQUILIBRIUM . . . . . . . . . . . . . . . .
. . . . . . . 381 3.3 UNIQUENESS THEOREM . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 382 3.4 NATURAL INITIAL STATE AND PRINCIPLE OF
SUPERPOSITION . . 382 3.5 NONZERO INITIAL SELF-EQUILIBRATING STRESS
STATE . . . . . . . 383 3.6 PRELOADED INITIAL STATE . . . . . . . . . .
. . . . . . . . . . . . . . . . . 383 4 SOLUTION TO THE THERMOELASTIC
EQUILIBRIUM PROBLEM . . . . . . . . 385 4.1 STATEMENT OF THE PROBLEM . .
. . . . . . . . . . . . . . . . . . . . . . 385 4.2 STATICALLY
ADMISSIBLE STRESS FIELDS. KINEMATICALLY ADMISSIBLE DISPLACEMENT FIELDS .
. . . . . 386 4.3 THERMOELASTIC EQUILIBRIUM AND ASSOCIATED ISOTHERMAL
ELASTIC EQUILIBRIUM . . . . . . 389 4.4 SOLUTION METHODS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 391 5 DISPLACEMENT METHOD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
5.1 BASIC PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 392 5.2 ISOTHERMAL EQUILIBRIUM AND HOMOGENEOUS ISOTROPIC
MATERIALS. NAVIER EQUATION . . . . . . . . . . . . . . . 393 5.3
STRONGLY HETEROGENEOUS MATERIALS AND THERMAL SHOCKS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 395 6 STRESS METHOD . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
6.1 BASIC PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 396 6.2 ISOTHERMAL EQUILIBRIUM AND HOMOGENEOUS ISOTROPIC
MATERIALS. BELTRAMI*MICHELL EQUATIONS . . . . . 398 6.3 STRONGLY
HETEROGENEOUS MATERIALS AND THERMAL SHOCKS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 401 7 TORSION OF A CYLINDRICAL ROD . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 402 7.1 STATEMENT OF THE
PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . 402 7.2
SOLUTION: DISPLACEMENT METHOD . . . . . . . . . . . . . . . . . . . 403
7.3 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 407 7.4 INVARIANCES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 408 7.5 ROD WITH CIRCULAR CROSS
SECTION . . . . . . . . . . . . . . . . . . 409 7.6 SOLUTION BY THE
STRESS METHOD . . . . . . . . . . . . . . . . . . . . 412 7.7 YIELD
POINT OF THE ROD IN TORSION . . . . . . . . . . . . . . . . . 413 8
SAINT VENANT PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 416 SUMMARY OF MAIN FORMULAS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 419 EXERCISES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 423 IX. CLASSIC TOPICS IN THREE-DIMENSIONAL ELASTICITY ...........
429 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 435 2 TENSION*COMPRESSION OF A CYLINDRICAL
ROD . . . . . . . . . . . . . . . . 436 2.1 STATEMENT OF THE PROBLEM . .
. . . . . . . . . . . . . . . . . . . . . . 436 2.2 FORM OF THE SOLUTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 XIV
CONTENTS 2.3 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 438 2.4 YIELD POINT OF THE ROD IN SIMPLE
TENSION OR COMPRESSION . . . . . . . . . . . . . . . . . 440 2.5
TENSION*TORSION OF A CYLINDRICAL ROD . . . . . . . . . . . . . . 440 3
NORMAL BENDING OF A CYLINDRICAL ROD . . . . . . . . . . . . . . . . . .
. . 442 3.1 STATEMENT OF THE PROBLEM . . . . . . . . . . . . . . . . . .
. . . . . . 442 3.2 FORM OF THE SOLUTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 443 3.3 REMARKS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 445 3.4 YIELD POINT OF
THE ROD IN NORMAL BENDING. . . . . . . . . . 450 4 OFF-AXIS BENDING OF A
CYLINDRICAL ROD . . . . . . . . . . . . . . . . . . . . 451 4.1 BENDING
NORMAL TO THE OY AXIS . . . . . . . . . . . . . . . . . . . 451 4.2
OFF-AXIS BENDING. STATEMENT OF THE PROBLEM . . . . . . . . 452 4.3 FORM
OF THE SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 452 4.4 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 452 5 BENDING OF A CYLINDRICAL ROD WITH AXIAL
LOADING . . . . . . . . . . 454 5.1 DEFINITION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 454 5.2 SOLUTION AND
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 5.3
SAINT VENANT PROBLEM. . . . . . . . . . . . . . . . . . . . . . . . . .
. . 455 6 ELASTIC EQUILIBRIUM OF A HOLLOW SPHERE UNDER PRESSURE . . . .
. 456 6.1 STATEMENT OF THE PROBLEM . . . . . . . . . . . . . . . . . . .
. . . . . 456 6.2 FORM OF THE SOLUTION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 456 6.3 REMARKS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 457 6.4 YIELD POINT OF A
HOLLOW SPHERE UNDER PRESSURE . . . . . . 460 7 ELASTIC EQUILIBRIUM OF A
CYLINDRICAL TUBE UNDER PRESSURE . . . 461 7.1 STATEMENT OF THE PROBLEM .
. . . . . . . . . . . . . . . . . . . . . . . 461 7.2 FORM OF THE
SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
7.3 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 464 SUMMARY OF MAIN FORMULAS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 465 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 467 X. VARIATIONAL METHODS IN LINEARISED THERMOELASTICITY .....
483 1 DIRECT METHODS AND VARIATIONAL METHODS . . . . . . . . . . . . . .
. . . 489 1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 489 1.2 DIRECT METHODS OF SOLUTION . . . . . .
. . . . . . . . . . . . . . . . . 491 1.3 PRESENTATION OF VARIATIONAL
METHODS . . . . . . . . . . . . . . . 492 1.4 THE VIRTUAL WORKTHEOREM .
. . . . . . . . . . . . . . . . . . . . . . 493 1.5 NOTIONS OF CONVEXITY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 1.6
EXPRESSING THE LINEARISED THERMOELASTIC CONSTITUTIVE LAW . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 496 2 MINIMUM OF THE
POTENTIAL ENERGY . . . . . . . . . . . . . . . . . . . . . . . . 499 2.1
CONVEXITY OF C ( S * I ,* D I ) . . . . . . . . . . . . . . . . . . . .
. . . . . . 499 2.2 MINIMUM PRINCIPLE FOR DISPLACEMENTS . . . . . . . .
. . . . . . 499 2.3 EXPLICIT EXPRESSIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 502 2.4 UNIQUENESS OF THE SOLUTION . . . . . .
. . . . . . . . . . . . . . . . . 502 2.5 THERMOELASTIC MATERIAL WITH
INTERNAL CONSTRAINTS . . . . 503 CONTENTS XV 3 MINIMUM OF THE
COMPLEMENTARY ENERGY . . . . . . . . . . . . . . . . . . 504 3.1
CONVEXITY OF S ( F ,S T I ,T D I ) . . . . . . . . . . . . . . . . . . .
. . . . 504 3.2 MINIMUM PRINCIPLE FOR STRESSES . . . . . . . . . . . . .
. . . . . . 505 3.3 EXPLICIT EXPRESSIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 507 3.4 UNIQUENESS OF THE SOLUTION . . . . . .
. . . . . . . . . . . . . . . . . 508 3.5 COMBINING MINIMUM PRINCIPLES
FOR DISPLACEMENTS AND STRESSES . . . . . . . . . . . . . . . . . . . .
509 3.6 THERMOELASTIC MATERIAL WITH INTERNAL CONSTRAINTS . . . . 510 3.7
PRESTRESSED AND PRELOADED INITIAL REFERENCE STATE. . . . 511 4
VARIATIONAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 512 4.1 CONVERSES TO THE MINIMUM PRINCIPLES . . . . .
. . . . . . . . . 512 4.2 VARIATIONAL METHODS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 514 5 NATURAL INITIAL STATE. ISOTHERMAL
EQUILIBRIUM . . . . . . . . . . . . . . 519 5.1 EXPRESSIONS FOR THE
ELASTIC ENERGY . . . . . . . . . . . . . . . . . 519 5.2 CLAPEYRON
EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
5.3 EXAMPLE: APPARENT MODULUS OF A HETEROGENEOUS CYLINDER . . . . . . .
. . . . . . . . . . . . . . . 522 5.4 THE MAXWELL*BETTI RECIPROCITY
THEOREM . . . . . . . . . . . 525 6 SELF-EQUILIBRATING STRESS FIELDS.
MINIMUM POTENTIAL THEOREM . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 526 6.1 SELF-EQUILIBRATING STRESS FIELDS FOR THE PROBLEM . . .
. . 526 6.2 MINIMUM COMPLEMENTARY ENERGY AND MINIMUM POTENTIAL THEOREM.
. . . . . . . . . . . . . . . . . 529 6.3 REMARKS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 7 PARAMETRIC
PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 531 7.1 AIM OF THE STUDY . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 531 7.2 STATICALLY ADMISSIBLE AND KINEMATICALLY
ADMISSIBLE FIELDS FOR THE PARAMETRIC PROBLEM . . . . . . . . . . . . . .
. . . 532 7.3 SELF-EQUILIBRATING STRESS FIELDS FOR THE PARAMETRIC
PROBLEM . . . . . . . . . . . . . . . . . . . . . . . 535 7.4 EXAMPLES
OF PARAMETRIC PROBLEMS . . . . . . . . . . . . . . . . . 536 8 ENERGY
THEOREMS FOR PARAMETRIC THERMOELASTIC EQUILIBRIUM 541 8.1 CASTIGLIANO*S
THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 8.2
MINIMUM POTENTIAL THEOREM . . . . . . . . . . . . . . . . . . . . . 545
8.3 ISOTHERMAL EQUILIBRIUM FROM THE NATURAL INITIAL STATE IN LINEAR
ELASTICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
549 9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 550 SUMMARY OF MAIN FORMULAS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 551 EXERCISES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 555 XI. STATICS OF ONE-DIMENSIONAL MEDIA
....................... 569 1 THE PROBLEM OF ONE-DIMENSIONAL MODELLING.
. . . . . . . . . . . . . . 577 2 STATICS OF WIRES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 2.1
GEOMETRICAL MODEL. REAL MOTIONS . . . . . . . . . . . . . . . . . 579
2.2 VECTOR SPACE OF VIRTUAL MOTIONS . . . . . . . . . . . . . . . . . .
. 580 XVI CONTENTS 2.3 VIRTUAL RATE OF WORKBY EXTERNAL FORCES . . . . .
. . . . . . 580 2.4 VIRTUAL RATE OF WORKBY INTERNAL FORCES . . . . . . .
. . . . . 582 2.5 EQUILIBRIUM EQUATIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . 583 2.6 CONSISTENCY OF THE MODEL. PHYSICAL
INTERPRETATION . . . 584 2.7 DISCONTINUITIES IN THE INTERNAL FORCE FIELD
. . . . . . . . . . 586 2.8 INTEGRATING THE EQUILIBRIUM EQUATIONS . . .
. . . . . . . . . . 587 2.9 DISCONTINUITIES IN THE VIRTUAL VELOCITY
FIELD . . . . . . . . 588 2.10 RELEVANCE OF THE MODEL . . . . . . . . .
. . . . . . . . . . . . . . . . . 589 3 STATICS OF BEAMS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 3.1
GUIDING IDEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 592 3.2 GEOMETRICAL MODEL. REAL MOTIONS . . . . . . . . . .
. . . . . . . 593 3.3 VECTOR SPACE OF VIRTUAL MOTIONS . . . . . . . . .
. . . . . . . . . . 594 3.4 VIRTUAL RATE OF WORKBY EXTERNAL FORCES . . .
. . . . . . . . 594 3.5 VIRTUAL RATE OF WORKBY INTERNAL FORCES . . . . .
. . . . . . . 596 3.6 EQUILIBRIUM EQUATIONS . . . . . . . . . . . . . .
. . . . . . . . . . . . . 598 3.7 CONSISTENCY OF THE MODEL. PHYSICAL
INTERPRETATION . . . 600 3.8 DISCONTINUITIES IN THE INTERNAL FORCE FIELD
. . . . . . . . . . 601 3.9 INTEGRATING THE EQUILIBRIUM EQUATIONS . . .
. . . . . . . . . . 602 3.10 DISCONTINUITIES IN THE VIRTUAL MOTION . . .
. . . . . . . . . . . 603 3.11 RELEVANCE OF THE MODEL . . . . . . . . .
. . . . . . . . . . . . . . . . . 604 3.12 COMPARING ONE-DIMENSIONAL AND
THREE-DIMENSIONAL MODELS . . . . . . . . . . . . . . . . . . . . 607
3.13 THE NAVIER*BERNOULLI CONDITION . . . . . . . . . . . . . . . . . .
. 610 4 STRUCTURES COMPOSED OF ONE-DIMENSIONAL MEMBERS . . . . . . . .
613 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 613 4.2 ENDPOINT AND SUPPORT BOUNDARY CONDITIONS . .
. . . . . . 614 4.3 BOUNDARY CONDITIONS AT ASSEMBLY JOINTS . . . . . . .
. . . . 618 4.4 CONNECTIONS AND SUPPORTS . . . . . . . . . . . . . . . .
. . . . . . . . 621 4.5 STATIC ANALYSIS OF STRUCTURES . . . . . . . . .
. . . . . . . . . . . . . 621 4.6 KINEMATIC ANALYSIS OF STRUCTURES . . .
. . . . . . . . . . . . . . . 623 4.7 PLANE STRUCTURES LOADED IN-PLANE .
. . . . . . . . . . . . . . . . 625 SUMMARY OF MAIN FORMULAS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 628 EXERCISES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 631 XII. THERMOELASTIC STRUCTURAL ANALYSIS
....................... 645 1 INTRODUCTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 651 2
THERMOELASTIC BEHAVIOUR OF THE ONE-DIMENSIONAL MEDIUM . . 652 2.1
FORMULATING A CONSTITUTIVE LAW . . . . . . . . . . . . . . . . . . . 652
2.2 INFINITESIMAL TRANSFORMATION. DISPLACEMENT AND STRAIN DISTRIBUTORS .
. . . . . . . . . . . . . 653 2.3 VIRTUAL WORKTHEOREM . . . . . . . . .
. . . . . . . . . . . . . . . . . . 655 2.4 GUIDING IDEAS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 2.5
ISOTHERMAL ELASTIC BEHAVIOUR OF A STRAIGHT BEAM ELEMENT FROM THE NATURAL
INITIAL STATE . . . . . . . . . . . . . 656 CONTENTS XVII 2.6
THERMOELASTIC BEHAVIOUR OF A STRAIGHT BEAM ELEMENT IN A PRESTRESSED
INITIAL STATE . . . . . . . . . . . . . . . . . . . . . . 663 2.7
THERMOELASTIC BEHAVIOUR OF THE ONE-DIMENSIONAL MEDIUM IN STRUCTURAL
ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 2.8
EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 667 3 LINEARISED THERMOELASTIC EQUILIBRIUM OF
ONE-DIMENSIONAL STRUCTURES . . . . . . . . . . . . . . . . . . . . . . .
. . . 667 3.1 SMALL PERTURBATION HYPOTHESIS . . . . . . . . . . . . . .
. . . . . . 667 3.2 STATICALLY DETERMINATE PROBLEMS . . . . . . . . . .
. . . . . . . . 668 3.3 STATICALLY INDETERMINATE PROBLEMS . . . . . . .
. . . . . . . . . . 668 3.4 MAIN FORMULAS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 669 3.5 PLANE STRUCTURES LOADED
IN-PLANE . . . . . . . . . . . . . . . . . 670 3.6 STRAIGHT BEAMS LOADED
IN-PLANE . . . . . . . . . . . . . . . . . . 672 4 EXAMPLE APPLICATIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
4.1 STATICALLY DETERMINATE PROBLEMS . . . . . . . . . . . . . . . . . .
674 4.2 STATICALLY INDETERMINATE PROBLEMS . . . . . . . . . . . . . . .
. . 676 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 678 SUMMARY OF MAIN FORMULAS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 EXERCISES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 682 APPENDICES I. ELEMENTS OF TENSOR CALCULUS
............................. 693 1 TENSORS ON A VECTOR SPACE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 699 1.1 DEFINITION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
699 1.2 FIRST RANKTENSORS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 700 1.3 SECOND RANKTENSORS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 700 2 TENSOR PRODUCT OF TENSORS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 701 2.1 DEFINITION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
2.2 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 701 2.3 PRODUCT TENSORS. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 702 3 TENSOR COMPONENTS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 3.1
DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 703 3.2 CHANGE OF BASIS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 704 3.3 MIXED SECOND RANKTENSORS . . . .
. . . . . . . . . . . . . . . . . . 705 3.4 TWICE CONTRAVARIANT OR TWICE
COVARIANT SECOND RANKTENSORS . . . . . . . . . . . 707 3.5 COMPONENTS OF
A TENSOR PRODUCT . . . . . . . . . . . . . . . . . . 708 4 CONTRACTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 708 4.1 DEFINITION OF THE CONTRACTION OF A TENSOR . . . . .
. . . . . . 708 4.2 CONTRACTED MULTIPLICATION . . . . . . . . . . . . .
. . . . . . . . . . . 709 4.3 DOUBLY CONTRACTED PRODUCT OF TWO TENSORS .
. . . . . . . 711 4.4 TOTAL CONTRACTION OF A TENSOR PRODUCT . . . . . .
. . . . . . . 713 4.5 DEFINING TENSORS BY DUALITY . . . . . . . . . . .
. . . . . . . . . . . 713 4.6 INVARIANTS OF A MIXED SECOND RANKTENSOR .
. . . . . . . . . 714 XVIII CONTENTS 5 TENSORS ON A EUCLIDEAN VECTOR
SPACE . . . . . . . . . . . . . . . . . . . . . 714 5.1 DEFINITION OF A
EUCLIDEAN SPACE . . . . . . . . . . . . . . . . . . . 714 5.2
APPLICATION: DEFORMATION IN A LINEAR MAPPING . . . . . . 715 5.3
ISOMORPHISM BETWEEN E AND E * . . . . . . . . . . . . . . . . . . 715
5.4 COVARIANT FORM OF VECTORS IN E . . . . . . . . . . . . . . . . . . .
717 5.5 FIRST RANKEUCLIDEAN TENSORS AND THE CONTRACTED PRODUCT . . . . .
. . . . . . . . . . . . . . . . . 718 5.6 SECOND RANKEUCLIDEAN TENSORS
OF SIMPLE PRODUCT FORM AND THEIR CONTRACTED PRODUCTS . . . . . . . 719
5.7 SECOND RANKEUCLIDEAN TENSORS . . . . . . . . . . . . . . . . . . .
721 5.8 RANK N EUCLIDEAN TENSORS . . . . . . . . . . . . . . . . . . . .
. . . . 726 5.9 CHOICE OF ORTHONORMAL BASIS IN E . . . . . . . . . . . .
. . . . . 726 5.10 PRINCIPAL AXES AND PRINCIPAL VALUES OF A REAL
SYMMETRIC SECOND RANKEUCLIDEAN TENSOR . 727 6 TENSOR FIELDS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
729 6.1 DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 729 6.2 DERIVATIVE AND GRADIENT OF A TENSOR FIELD
. . . . . . . . . . 729 6.3 DIVERGENCE OF A TENSOR FIELD . . . . . . . .
. . . . . . . . . . . . . . 731 6.4 CURVILINEAR COORDINATES . . . . . .
. . . . . . . . . . . . . . . . . . . . 732 SUMMARY OF MAIN FORMULAS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 II.
DIFFERENTIAL OPERATORS: BASIC FORMULAS .................. 741 1
ORTHONORMAL CARTESIAN COORDINATES . . . . . . . . . . . . . . . . . . .
. . . 743 1.1 COORDINATES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 743 1.2 VECTOR FIELD . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 743 1.3 SCALAR FUNCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 1.4
SECOND RANKTENSOR FIELD . . . . . . . . . . . . . . . . . . . . . . . .
744 2 GENERAL CARTESIAN COORDINATES . . . . . . . . . . . . . . . . . .
. . . . . . . . 744 2.1 COORDINATES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 744 2.2 VECTOR FIELD . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 2.3 SCALAR
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 745 2.4 SECOND RANKTENSOR FIELD . . . . . . . . . . . . . . . . . . .
. . . . . 745 3 CYLINDRICAL COORDINATES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 746 3.1 PARAMETRISATION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 746 3.2 VECTOR FIELD .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
746 3.3 SCALAR FUNCTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 747 3.4 SYMMETRIC SECOND RANKTENSOR FIELD . . . . . .
. . . . . . . . 747 4 SPHERICAL COORDINATES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 747 4.1 PARAMETRISATION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 4.2 VECTOR
FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 748 4.3 SCALAR FUNCTION . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 749 4.4 SYMMETRIC SECOND RANKTENSOR FIELD . . .
. . . . . . . . . . . 749 CONTENTS XIX III. ELEMENTS OF PLANE ELASTICITY
............................. 751 1 PLANE PROBLEMS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 2 PLANE
STRAIN THERMOELASTIC EQUILIBRIUM . . . . . . . . . . . . . . . . . . 757
2.1 PLANE LINEARISED STRAIN TENSOR . . . . . . . . . . . . . . . . . . .
. 757 2.2 PLANE STRAIN DISPLACEMENT FIELD. . . . . . . . . . . . . . . .
. . . 758 2.3 PLANE STRAIN THERMOELASTIC EQUILIBRIUM IN A HOMOGENEOUS
AND ISOTROPIC MATERIAL . . . . . . . . . . . 758 2.4 SOLUTION BY THE
DISPLACEMENT METHOD . . . . . . . . . . . . . . 760 2.5 SOLUTION BY THE
STRESS METHOD . . . . . . . . . . . . . . . . . . . . 764 2.6 REMARKS ON
THE PLANE STRAIN TWO-DIMENSIONAL PROBLEM . . . . . . . . . . . . . . . .
. . . . . . . . 767 2.7 TWO-DIMENSIONAL BELTRAMI*MICHELL EQUATION . . .
. . . . 767 2.8 BODY FORCES DERIVING FROM A POTENTIAL. AIRY FUNCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
2.9 CYLINDRICAL TUBE UNDER PRESSURE . . . . . . . . . . . . . . . . . .
770 3 PLANE STRESS THERMOELASTIC EQUILIBRIUM . . . . . . . . . . . . . .
. . . . 771 3.1 PLANE STRESS TENSOR . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 771 3.2 PLANE STRESS FIELD . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 771 3.3 PLANE STRESS
THERMOELASTIC EQUILIBRIUM IN A HOMOGENEOUS AND ISOTROPIC MATERIAL . . .
. . . . . . . . 771 3.4 SOLUTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 773 3.5 CYLINDRICAL TUBE UNDER
PRESSURE . . . . . . . . . . . . . . . . . . 778 SUMMARY OF MAIN
FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 780 BIBLIOGRAPHY ..................................................
783 SUBJECT INDEX ................................................ 789
|
any_adam_object | 1 |
author | Salençon, Jean 1940- |
author_GND | (DE-588)122726022 |
author_facet | Salençon, Jean 1940- |
author_role | aut |
author_sort | Salençon, Jean 1940- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV013694292 |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.2 |
callnumber-search | QA808.2 |
callnumber-sort | QA 3808.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 2000 |
classification_tum | MTA 010f PHY 210f |
ctrlnum | (OCoLC)46456275 (DE-599)BVBBV013694292 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01626nam a22004338c 4500</leader><controlfield tag="001">BV013694292</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150903 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010417s2001 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960935291</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540414436</subfield><subfield code="9">3-540-41443-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46456275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013694292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 010f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 210f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salençon, Jean</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122726022</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Mécanique des milieux continus</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of continuum mechanics</subfield><subfield code="b">general concepts, thermoelasticity</subfield><subfield code="c">Jean Salençon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 803 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">2 Beil.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009358613&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009358613</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV013694292 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:50:23Z |
institution | BVB |
isbn | 3540414436 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009358613 |
oclc_num | 46456275 |
open_access_boolean | |
owner | DE-703 DE-29T DE-1046 DE-706 DE-634 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-29T DE-1046 DE-706 DE-634 DE-91G DE-BY-TUM |
physical | XIX, 803 S. Ill., graph. Darst. 2 Beil. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series2 | Physics and astronomy online library |
spelling | Salençon, Jean 1940- Verfasser (DE-588)122726022 aut Mécanique des milieux continus Handbook of continuum mechanics general concepts, thermoelasticity Jean Salençon Berlin [u.a.] Springer 2001 XIX, 803 S. Ill., graph. Darst. 2 Beil. txt rdacontent n rdamedia nc rdacarrier Physics and astronomy online library Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Kontinuumsmechanik (DE-588)4032296-8 s DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009358613&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Salençon, Jean 1940- Handbook of continuum mechanics general concepts, thermoelasticity Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4123623-3 |
title | Handbook of continuum mechanics general concepts, thermoelasticity |
title_alt | Mécanique des milieux continus |
title_auth | Handbook of continuum mechanics general concepts, thermoelasticity |
title_exact_search | Handbook of continuum mechanics general concepts, thermoelasticity |
title_full | Handbook of continuum mechanics general concepts, thermoelasticity Jean Salençon |
title_fullStr | Handbook of continuum mechanics general concepts, thermoelasticity Jean Salençon |
title_full_unstemmed | Handbook of continuum mechanics general concepts, thermoelasticity Jean Salençon |
title_short | Handbook of continuum mechanics |
title_sort | handbook of continuum mechanics general concepts thermoelasticity |
title_sub | general concepts, thermoelasticity |
topic | Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd |
topic_facet | Continuum mechanics Kontinuumsmechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009358613&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT salenconjean mecaniquedesmilieuxcontinus AT salenconjean handbookofcontinuummechanicsgeneralconceptsthermoelasticity |