Lectures on Seiberg-Witten invariants:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London
Springer
2001
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Lecture notes in mathematics
1629 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 101 - 103. - Erscheint: April 2001 |
Beschreibung: | VI, 105 S. 24 cm |
ISBN: | 3540412212 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013653025 | ||
003 | DE-604 | ||
005 | 20010508 | ||
007 | t | ||
008 | 010320s2001 gw |||| |||| 00||| eng d | ||
016 | 7 | |a 961056436 |2 DE-101 | |
020 | |a 3540412212 |9 3-540-41221-2 | ||
035 | |a (OCoLC)248374127 | ||
035 | |a (DE-599)BVBBV013653025 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-706 |a DE-11 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 555f |2 stub | ||
100 | 1 | |a Moore, John D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Seiberg-Witten invariants |c John Douglas Moore |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London |b Springer |c 2001 | |
300 | |a VI, 105 S. |b 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1629 | |
500 | |a Literaturverz. S. 101 - 103. - Erscheint: April 2001 | ||
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 4 |0 (DE-588)4338676-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 0 | 2 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 1 | 2 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1629 |w (DE-604)BV000676446 |9 1629 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328624&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009328624 |
Datensatz im Suchindex
_version_ | 1807504344999788544 |
---|---|
adam_text |
CONTENTS
1
PRELIMINARIES
1
1.1
INTRODUCTION
.
1
1.2
WHAT
IS
A
VECTOR
BUNDLE?
.
4
1.3
WHAT
IS
A
CONNECTION?
.
9
1.4
THE
CURVATURE
OF
A
CONNECTION
.
16
1.5
CHARACTERISTIC
CLASSES
.
19
1.6
THE
THOM
FORM
.
24
1.7
THE
UNIVERSAL
BUNDLE
.
27
1.8
CLASSIFICATION
OF
CONNECTIONS
.
34
1.9
HODGE
THEORY
.
40
2
SPIN
GEOMETRY
ON
FOUR-MANIFOLDS
45
2.1
EUCLIDEAN
GEOMETRY
AND
THE
SPIN
GROUPS
.
45
2.2
WHAT
IS
A
SPIN
STRUCTURE?
.
49
2.3
ALMOST
COMPLEX
AND
SPIN
0
STRUCTURES
.
53
2.4
CLIFFORD
ALGEBRAS
.
54
2.5
THE
SPIN
CONNECTION
.
58
2.6
THE
DIRAC
OPERATOR
.
63
2.7
THE
ATIYAH-SINGER
INDEX
THEOREM
.
67
3
GLOBAL
ANALYSIS
OF
THE
SEIBERG-WITTEN
EQUATIONS
73
3.1
THE
SEIBERG-WITTEN
EQUATIONS
.
73
3.2
THE
MODULI
SPACE
.
75
3.3
COMPACTNESS
OF
THE
MODULI
SPACE
.
79
3.4
TRANSVERSALITY
.
82
3.5
THE
INTERSECTION
FORM
.
91
3.6
DONALDSON
'
S
THEOREM
.
97
3.7
SEIBERG-WITTEN
INVARIANTS
.
98
3.8
DIRAC
OPERATORS
ON
KAHLER
SURFACES
.
101
3.9
INVARIANTS
OF
KAHLER
SURFACES
.
110
VIII
BIBLIOGRAPHY
INDEX
CONTENTS
117
120 |
any_adam_object | 1 |
author | Moore, John D. |
author_facet | Moore, John D. |
author_role | aut |
author_sort | Moore, John D. |
author_variant | j d m jd jdm |
building | Verbundindex |
bvnumber | BV013653025 |
classification_rvk | SI 850 |
classification_tum | MAT 555f |
ctrlnum | (OCoLC)248374127 (DE-599)BVBBV013653025 |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV013653025</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010508</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010320s2001 gw |||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">961056436</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540412212</subfield><subfield code="9">3-540-41221-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248374127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013653025</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 555f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moore, John D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Seiberg-Witten invariants</subfield><subfield code="c">John Douglas Moore</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 105 S.</subfield><subfield code="b">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1629</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 101 - 103. - Erscheint: April 2001</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1629</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1629</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328624&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009328624</subfield></datafield></record></collection> |
id | DE-604.BV013653025 |
illustrated | Not Illustrated |
indexdate | 2024-08-16T01:07:50Z |
institution | BVB |
isbn | 3540412212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009328624 |
oclc_num | 248374127 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-706 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-706 DE-11 |
physical | VI, 105 S. 24 cm |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Moore, John D. Verfasser aut Lectures on Seiberg-Witten invariants John Douglas Moore 2. ed. Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London Springer 2001 VI, 105 S. 24 cm txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1629 Literaturverz. S. 101 - 103. - Erscheint: April 2001 Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Dimension 4 (DE-588)4338676-3 gnd rswk-swf Seiberg-Witten-Invariante (DE-588)4430370-1 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 4 (DE-588)4338676-3 s Seiberg-Witten-Invariante (DE-588)4430370-1 s DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s Topologische Mannigfaltigkeit (DE-588)4185712-4 s 1\p DE-604 Lecture notes in mathematics 1629 (DE-604)BV000676446 1629 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328624&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Moore, John D. Lectures on Seiberg-Witten invariants Lecture notes in mathematics Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Dimension 4 (DE-588)4338676-3 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd |
subject_GND | (DE-588)4185712-4 (DE-588)4044779-0 (DE-588)4037379-4 (DE-588)4338676-3 (DE-588)4430370-1 |
title | Lectures on Seiberg-Witten invariants |
title_auth | Lectures on Seiberg-Witten invariants |
title_exact_search | Lectures on Seiberg-Witten invariants |
title_full | Lectures on Seiberg-Witten invariants John Douglas Moore |
title_fullStr | Lectures on Seiberg-Witten invariants John Douglas Moore |
title_full_unstemmed | Lectures on Seiberg-Witten invariants John Douglas Moore |
title_short | Lectures on Seiberg-Witten invariants |
title_sort | lectures on seiberg witten invariants |
topic | Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Dimension 4 (DE-588)4338676-3 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd |
topic_facet | Topologische Mannigfaltigkeit Partielle Differentialgleichung Mannigfaltigkeit Dimension 4 Seiberg-Witten-Invariante |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328624&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT moorejohnd lecturesonseibergwitteninvariants |