Complex analysis in one variable:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Boston ; Basel ; Berlin
Birkhäuser
2001
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIV, 381 S. graph. Darst. : 24 cm |
ISBN: | 3764341645 0817641645 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013642117 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 010306s2001 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 960908153 |2 DE-101 | |
020 | |a 3764341645 |c (Basel ...) Pp. : sfr 118.00 |9 3-7643-4164-5 | ||
020 | |a 0817641645 |c (Boston) Pp. |9 0-8176-4164-5 | ||
035 | |a (DE-599)BVBBV013642117 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a Narasimhan, Raghavan |d 1937- |e Verfasser |0 (DE-588)107634015 |4 aut | |
245 | 1 | 0 | |a Complex analysis in one variable |c Raghavan Narasimhan ; Yves Nievergelt |
250 | |a 2. ed. | ||
264 | 1 | |a Boston ; Basel ; Berlin |b Birkhäuser |c 2001 | |
300 | |a XIV, 381 S. |b graph. Darst. : 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Variable |0 (DE-588)4164905-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Komplexe Variable |0 (DE-588)4164905-9 |D s |
689 | 0 | 1 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 1 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Nievergelt, Yves |d 1954- |e Verfasser |0 (DE-588)121171108 |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009321231&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009321231 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804128452316495872 |
---|---|
adam_text | Contents
Preface to the Second Edition ix
Preface to the First Edition xi
Notation and Terminology xiii
I Complex Analysis in One Variable
Raghavan Narasimhan 1
1 Elementary Theory of Holomorphic Functions 3
1 Some basic properties of C differentiable
and holomorphic functions 4
2 Integration along curves 10
3 Fundamental properties of holomorphic functions 22
4 The theorems of Weierstrass and Montel 32
5 Meromorphic functions 36
6 The Looman Menchoff theorem 43
2 Covering Spaces and the Monodromy Theorem 53
1 Covering spaces and the lifting of curves 53
2 The sheaf of germs of holomorphic functions 55
3 Covering spaces and integration along curves 57
4 The monodromy theorem and the homotopy form
of Cauchy s theorem 60
5 Applications of the monodromy theorem 63
3 The Winding Number and the Residue Theorem 69
1 The winding number 69
2 The residue theorem 73
3 Applications of the residue theorem 79
4 Picard s Theorem 87
vi Contents
5 Inhomogeneous Cauchy Riemann Equation and Runge s Theorem 97
1 Partitions of unity 97
2 The equation §§ = / 99
3 Runge s theorem 103
4 The homology form of Cauchy s theorem Ill
6 Applications of Runge s Theorem 115
1 The Mittag Leffler theorem 115
2 The cohomology form of Cauchy s theorem 119
3 The theorem of Weierstrass 121
4 Ideals in H(Q) 127
7 Riemann Mapping Theorem and Simple Connectedness in the Plane 139
1 Analytic automorphisms of the disc and of the annulus 139
2 The Riemann mapping theorem 143
3 Simply connected plane domains 145
8 Functions of Several Complex Variables 151
9 Compact Riemann Surfaces 161
1 Definitions and basic theorems 161
2 Meromorphic functions 166
3 The cohomology group // (it, O) 167
4 A theorem from functional analysis 171
5 The finiteness theorem 176
6 Meromorphic functions on a compact Riemann surface 179
10 The Corona Theorem 187
1 The Poisson integral and the theorem of F. and M. Riesz 188
2 The corona theorem 197
11 Subharmonic Functions and the Dirichlet Problem 209
1 Semi continuous functions 209
2 Harmonic functions and Harnack s principle 212
3 Convex functions 215
4 Subharmonic functions: Definition and basic properties 219
5 Subharmonic functions: Further properties and
application to convexity theorems 227
6 Harmonic and subharmonic functions on Riemann surfaces 237
7 The Dirichlet problem 237
8 The Rado Cartan theorem 244
Appendix: Baire s Theorem 253
Contents vii
II Exercises
Yves Nievergelt 255
Introduction 257
0 Review of Complex Numbers 259
1 Algebraic properties of the complex numbers 259
2 Complex equations of generalized circles 261
3 Complex fractional linear transformations 262
4 Topological concepts 265
1 Elementary Theory of Holomorphic Functions 267
1 Some basic properties of C differentiable
and holomorphic functions 267
1.1 Complex derivatives and Cauchy Riemann equations 267
1.2 Differentials and conformal maps 269
1.3 Conformal maps 270
1.4 Radius of convergence of power series 275
1.5 Exponential, trigonometric, and dilogarithm functions .... 277
2 Integration along curves 278
2.1 Complex line integrals 278
2.2 Complex derivatives of line integrals 279
2.3 Remainder of complex Taylor polynomials 281
2.4 H. A. Schwarz s reflection principle 281
3 Fundamental properties of holomorphic functions 282
3.1 The complex exponential function 282
3.2 Holomorphic functions 284
3.3 Bounds on the size of roots of polynomials 285
3.4 Principal branch of the complex square root 287
3.5 Complex square roots in celestial mechanics 288
4 Theorems of Weierstrass and Montel 290
5 Meromorphic functions 290
5.1 A complex Newton s method 291
5.2 Sequences of complex numbers 293
2 Covering Spaces and the Monodromy Theorem 297
1 Covering spaces and the lifting of curves 297
1.1 Examples of real or complex manifolds 297
1.2 Covering maps 299
2 The sheaf of germs of holomorphic functions 299
3 Covering spaces and integration along curves 300
4 The monodromy theorem and the homotopy form
of Cauchy s theorem 303
5 Applications of the monodromy theorem 303
viii Contents
3 The Winding Number and the Residue Theorem 305
1 The winding number 305
2 The residue theorem 307
3 Applications of the residue theorem 310
4 Picard s Theorem 313
5 The Inhomogeneous Cauchy Riemann Equation and Runge s Theorem 315
1 Partitions of unity 315
2 The equation 3«/3z = 0 316
2.1 Complex differential forms 316
2.2 Rouche s theorem 321
2.3 Inhomogeneous Cauchy Riemann equations 322
3 Runge s theorem 323
6 Applications of Runge s Theorem 331
1 The Mittag Leffier theorem 331
2 The cohomology form of Cauchy s theorem 332
3 The theorem of Weierstrass 332
4 Ideals in H(Cl) 335
7 The Riemann Mapping Theorem and Simple Connectedness
in the Plane 337
1 Analytic automorphisms of the disc
and of the annulus 337
2 The Riemann mapping theorem 340
3 Simply connected plane domains 342
8 Functions of Several Complex Variables 343
9 Compact Riemann Surfaces 351
1 Definitions and basic theorems 351
3 The cohomology group H (ii, 0) 355
6 Meromorphic functions on a compact
Riemann surface 358
10 The Corona Theorem 361
1 The Poisson integral and the theorem of
F. andM. Riesz 361
11 Subharmonic Functions and the Dirichlet Problem 365
Notes for the exercises 369
References for the exercises 373
Index 379
|
any_adam_object | 1 |
author | Narasimhan, Raghavan 1937- Nievergelt, Yves 1954- |
author_GND | (DE-588)107634015 (DE-588)121171108 |
author_facet | Narasimhan, Raghavan 1937- Nievergelt, Yves 1954- |
author_role | aut aut |
author_sort | Narasimhan, Raghavan 1937- |
author_variant | r n rn y n yn |
building | Verbundindex |
bvnumber | BV013642117 |
classification_rvk | SK 750 |
ctrlnum | (DE-599)BVBBV013642117 |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02033nam a2200469 c 4500</leader><controlfield tag="001">BV013642117</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010306s2001 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960908153</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764341645</subfield><subfield code="c">(Basel ...) Pp. : sfr 118.00</subfield><subfield code="9">3-7643-4164-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817641645</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-4164-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013642117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis in one variable</subfield><subfield code="c">Raghavan Narasimhan ; Yves Nievergelt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 381 S.</subfield><subfield code="b">graph. Darst. : 24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nievergelt, Yves</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121171108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009321231&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009321231</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013642117 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:49:28Z |
institution | BVB |
isbn | 3764341645 0817641645 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009321231 |
open_access_boolean | |
physical | XIV, 381 S. graph. Darst. : 24 cm |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser |
record_format | marc |
spelling | Narasimhan, Raghavan 1937- Verfasser (DE-588)107634015 aut Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt 2. ed. Boston ; Basel ; Berlin Birkhäuser 2001 XIV, 381 S. graph. Darst. : 24 cm txt rdacontent n rdamedia nc rdacarrier Literaturangaben Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 s Funktionentheorie (DE-588)4018935-1 s 1\p DE-604 Funktion Mathematik (DE-588)4071510-3 s Mehrere komplexe Variable (DE-588)4169285-8 s 2\p DE-604 Nievergelt, Yves 1954- Verfasser (DE-588)121171108 aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009321231&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Narasimhan, Raghavan 1937- Nievergelt, Yves 1954- Complex analysis in one variable Mehrere komplexe Variable (DE-588)4169285-8 gnd Funktionentheorie (DE-588)4018935-1 gnd Komplexe Variable (DE-588)4164905-9 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
subject_GND | (DE-588)4169285-8 (DE-588)4018935-1 (DE-588)4164905-9 (DE-588)4071510-3 |
title | Complex analysis in one variable |
title_auth | Complex analysis in one variable |
title_exact_search | Complex analysis in one variable |
title_full | Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt |
title_fullStr | Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt |
title_full_unstemmed | Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt |
title_short | Complex analysis in one variable |
title_sort | complex analysis in one variable |
topic | Mehrere komplexe Variable (DE-588)4169285-8 gnd Funktionentheorie (DE-588)4018935-1 gnd Komplexe Variable (DE-588)4164905-9 gnd Funktion Mathematik (DE-588)4071510-3 gnd |
topic_facet | Mehrere komplexe Variable Funktionentheorie Komplexe Variable Funktion Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009321231&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT narasimhanraghavan complexanalysisinonevariable AT nievergeltyves complexanalysisinonevariable |