Classical many body problems amenable to exact treatments: (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Lecture notes in physics
New series M, monographs ; 66 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 735 - 749 |
Beschreibung: | XVIII, 749 S. 24 cm |
ISBN: | 3540417648 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013617491 | ||
003 | DE-604 | ||
005 | 20021218 | ||
007 | t | ||
008 | 010226s2001 gw |||| |||| 00||| eng d | ||
016 | 7 | |a 960885773 |2 DE-101 | |
020 | |a 3540417648 |c Pp. : DM 149.00 |9 3-540-41764-8 | ||
035 | |a (OCoLC)46456270 | ||
035 | |a (DE-599)BVBBV013617491 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-634 |a DE-11 | ||
050 | 0 | |a QB362.M3 | |
082 | 0 | |a 521 |2 21 | |
084 | |a UD 8221 |0 (DE-625)145544: |2 rvk | ||
084 | |a UL 1000 |0 (DE-625)145815: |2 rvk | ||
084 | |a PHY 200f |2 stub | ||
084 | |a PHY 026f |2 stub | ||
100 | 1 | |a Calogero, Francesco |d 1935- |e Verfasser |0 (DE-588)112739245 |4 aut | |
245 | 1 | 0 | |a Classical many body problems amenable to exact treatments |b (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space |c Francesco Calogero |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XVIII, 749 S. |b 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics : New series M, monographs |v 66 | |
490 | 0 | |a Physics and astronomy online library | |
500 | |a Literaturverz. S. 735 - 749 | ||
650 | 4 | |a Problème des N corps | |
650 | 7 | |a Problème des N corps |2 ram | |
650 | 4 | |a Many-body problem | |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in physics |v New series M, monographs ; 66 |w (DE-604)BV021852221 |9 66 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009304063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009304063 |
Datensatz im Suchindex
_version_ | 1804128426756407296 |
---|---|
adam_text | CONTENTS I. CLASSICAL (NONQUANTAL, NONRELATIVISTIC) MANY-BODYPROBLEMS 1
1.1 NEWTON S EQUATION IN ONE, TWO ANDTHREE DIMENSIONS ........... 1 1.2
HAMILTONIAN SYSTEMS - INTEGRABLE SYSTEMS ............................. 6
LN NOTES TO CHAPTER I
................................................................. 16 2.
ONE-DIMENSIONAL SYSTEMS. MOTIONS ON THE LINEANDON THE CIRCLE 17 2.1
THELAX PAIRTECHNIQUE
.......................................................... 17 2.1.1 A
CONVENIENTREPRESENTATION. THE FUNCTIONAL EQUATION (*)
........................................ 23 2.1.2 A SIMPLE SOLUTION
OFTHE FUNCTIONAL EQUATION (*) ........ 26 2.1.3 NPARTICLES ON THE LINE,
INTERACTING PAIRWISEVIA REPULSIVE FORCES INVERSELYPROPORTIONAL TO THE
CUBE OFTHEIRMUTUAL DISTANCE
.............................................. 27 2.1.3.F QUALITATIVE
BEHAVIOR ...................................... 27 2.1.3.2 THE TECHNIQUE
OFSOLUTION OF01SHANETSKY ANDPERELOMOV(OP)
..................................... 30 2.1.3.3 MOTION IN THE PRESENCE
OFAN ADDITIONAL HARMONIC INTERACTION. EXTENSION OFTHEOP TECHNIQUE
OFSOLUTION .................................... 37 2.1.4 GENERAL
SOLUTION OFTHE FUNCTIONAL EQUATION (*). INTEGRABLE MANY-BODYMODELWITH
ELLIPTIC INTERACTIONS 47 2.1.5 NPARTICLES ON THE LINE INTERACTING
PAIRWISE VIA A REPULSIVE HYPERBOLIC FORCE. TECHNIQUE OFSOLUTIONOP 53
2.1.6 NPARTICLES ON THE CIRCLE INTERACTINGPAIRWISE VIA A TRIGONOMETRIC
FORCE ............................................. 61 2.1.7 VARIOUS
TRICKS: CHANGES OFVARIABLES, PARTICLES - OF DIFFERENT TYPES,
DUPLICATIONS, INFINITE DUPLICATIONS (FROM RATIONAL TO HYPERBOLIC,
TRIGONOMETRIC, ELLIPTIC FORCES), REDUCTIONS (MODELWITH FORCES ONLYAMONG
NEARESTNEIGHBORS ) ............................... 63 2.1.8 ANOTHER
CONVENIENT REPRESENTATION FORTHELAX PAIR. THE FUNCTIONAL EQUATION (**)
...................................... 80 2.1.9 A SIMPLE SOLUTION OFTHE
FUNCTIONAL EQUATION (**) ...... 84 2.1.9.1 FAKELAX
PAIRS............................................... 86 XILT
2.1.10NPARTICLES ONTHE LINE, INTERACTINGPAIRWISE VIA FORCES EQUAL TO
TWICE THE PRODUCT OFTHEIR VELOCITIES DIVIDED BY THEIRMUTUAL DISTANCE
.............................................. 90 2. 1.10.1 TECHNIQUE
OFSOLUTIONOP ............................. 92 2.1.10.2BEHAVIOROFTHE
SOLUTIONS: MENTIONOFFUTURE DEVELOPMENTS................... 94 2.1.10.3
CANA FAKELAX PAIRBEUSED TO SOLVE A NONTRIVIAL MANY-BODYPROBLEM?
............... 97 2.1.11 GENERAL SOLUTIONOFTHE FUNCTIONAL EQUATION
........ 99 2.1.12 THEMANY-BODYPROBLEM OFRUIJSENAARS AND SCHNEIDER (RS)
............................. 110 2.1.12.1 HAMILTONIANANDNEWTONIAN
EQUATIONS FOR THERS MODEL .......................................... 113
2.1.12.2RELATIVISTIC CHARACTEROFTHERS MODEL .......... 115
2.1.12.3NEWTONIAN CASE. COMPLEX EXTENSION PRESUMABLY CHARACTERIZEDBY
COMPLETELY PERIODICMOTIONS ...........................................
119 2.1.12.4 SOLUTION VIA THEOP TECHNIQUE IN THE RATIONAL, HYPERBOLIC
ANDTRIGONOMETRIC CASES. COMPLETELYPERIODIC CHARACTER OFTHE MOTION
................................................ 122 2.1.13 VARIOUS
TRICKS: CHANGES OFVARIABLES, DUPLICATIONS, INFINITE DUPLICATIONS,
REDUCTIONS TO NEAREST-NEIGHBOI FORCES, ELIMINATIONOFVELOCITY-DEPENDENT
FORCES ........ 126 2.1.14 ANOTHERLAXPAIR CORRESPONDING TO AHAMILTONIAN
MANY-BODYPROBLEMON THE LINE. THE FUNCTIONAL EQUATION (***)
............................................................. 135
2.1.15A SIMPLE SOLUTIONOFTHE FUNCTIONAL EQUATION (***), ANDTHE
CORRESPONDINGHAMILTONIANMANY-BODY PROBLEM ONTHE LINE
.................................................... 138 2.1.15.1
EXPLICIT SOLUTION ............................................ 141
2.1.15.2REFORMULATION VIA CANONICAL TRANSFORMATIONS 147
2.1.16ANONANALYTIC SOLUTION OFTHE FUNCTIONAL EQUATION (* **), ANDTHE
CORRESPONDINGHAMILTONIAN
MANY-BODYPROBLEM.................................................... 151
2.1.16.1 PROOFOFINTEGRABILITY. ANEW FUNCTIONAL EQUATION
........................... 154 2.2 ANOTHER EXACTLY SOLVABLE
HAMILTONIANPROBLEM .................... 159 2.3 MANY-BODYPROBLEMS ONTHE
LINE RELATEDTO THEMOTION OFTHE ZEROS OFSOLUTIONS OFLINEAR PARTIAL
DIFFERENTIAL EQUATIONS IN I+I VARIABLES (SPACE+ TIME)
............................. 163 XIV 2.3.1 A NONLINEAR TRANSFORMATION:
RELATIONSHIPS BETWEEN THE COEFFICIENTS ANDTHE ZEROS OFAPOLYNOMIAL
............. 164 2.3.2 SOME FORMULAS FOR APOLYNOMIALAND ITS
DERIVATIVES, INTERMS OFITS COEFFICIENTS AND ITS ZEROS
..................... 165 2.3.3 MANY-BODYPROBLEMS ON THE LINE SOLVABLE
VIA THE IDENTIFICATION OFTHEIRMOTIONS WITHTHOSE OFTHE ZEROS
OFAPOLYNOMIAL THAT EVOLVES INTIME ACCORDING TO A LINEARPDE IN2 VARIABLES
(SPACE AND TIME) .............. 167 2.3.4 EXAMPLES
.................................................................... 174
2.3.4.1 FIRST-ORDER SYSTEMS........................................ 175
2.3.4.2 SECOND-ORDER SYSTEMS (NEWTONIAN EQUATIONS
OFMOTION)................. 188 2.3.5 TRIGONOMETRIC EXTENSION
............................................. 197 2.3.6 FURTHER
EXTENSION ........................................................ 203
2.3.6.1 NEW SOLVABLEMANY-BODYPROBLEMS VIA ANEW FIMCTIONAL EQUATION
...................... 207 2.3.6.2 GENERAL SOLUTION OFTHENEW
FUNCTIONALEQUATION..................... 213 2.3.6.3 ANEW
SOLVABLEMANY-BODYPROBLEM WITH ELLIPTIC-TYPE VELOCITY-DEPENDENT FORCES
219 2.4 FINITE-DIMENSIONAL REPRESENTATIONS OFDIFFERENTIAL OPERATORS,
LAGRANGIAN INTERPOLATION, AND ALL THAT
.................................... 228 2.4.1 FINITE-DIMENSIONALMATRIX
REPRESENTATIONS OFDIFFERENTIAL OPERATORS
.............................................. 229 2.4.2
CONNECTIONWITHLAGRANGIAN INTERPOLATION ................. 235 2.4.3
ALGEBRAIC APPROACH.....................................................
240 2.4.4 THE FINITE-DIMENSIONAL (MATRIX) ALGEBRAOFRAISING AND LOWERING
OPERATORS, AND ITS REALIZATIONS ............... 253 2.4.5 REMARKABLE
MATRICES AND IDENTITIES ............................ 264 2.4.5.1
MATRICES WITHKNOWN SPECTRUM..................... 265 2.4.5.2 MATRICES
WITHKNOWN INVERSE ........................ 268 2.4.5.3 AREMARKABLE
MATRIX, ANDSOME RELATED TRIGONOMETRIC IDENTITIES
................................ 269 2.4.5.4 MATRICES SATISFYING
FAKE LAX EQUATIONS ..... 273 2.4.5.5 DETERMINANTAL REPRESENTATIONS
OFPOLYNOMIALS DEFINEDBYODES ORBYRECURRENCE RELATIONS 274 2.5
MANY-BODYPROBLEMS ON THE LINE SOLVABLEVIATECHNIQUES OFEXACTLAGRANGIAN
INTERPOLATION .......................................... 279 IN NOTES TO
CHAPTER2
................................................................. 304 XV
3. N-BODYPROBLEMS TREATABLE VIA TECHNIQUES OFEXACTLAGRANGIAN
INTERPOLATION IN SPACES OFONE ORMORE DIMENSIONS ................. 311
3.1 GENERALIZED FORMULATION OFLAGRANGIAN INTERPOLATION, IN SPACES
OFARBITRARYDIMENSIONS ........................................... 311
3.1.1 FINITE-DIMENSIONAL REPRESENTATIONOFTHE OPERATOR OFDIFFERENTIATION
......................................................... 316 3.1.2
EXAMPLES
.................................................................... 330
3.1.2.1 ONE-DIMENSIONAL SPACE (S 1) ..................... 330 3.1.2.2
TWO-DIMENSIONAL SPACE (S 2) .................... 341 3.1.2.3
THREE-DIMENSIONAL SPACE (S = 3 ) .................. 352 3.2
N-BODYPROBLEMS IN SPACES OFONE ORMORE DIMENSIONS ........ 355 3.2.1
ONE-DIMENSIONALEXAMPLES......................................... 368
3.2.2 TWO-DIMENSIONAL EXAMPLES (IN THE PLANE).................. 389
3.2.3 FEW-BODYPROBLEMS IN ORDINARY (3-DIMENSIONAL) SPACE
.............................. 400 3.2.4 N-BODYPROBLEMS INM-DIMENSIONAL
SPACE, OR M2-BODYPROBLEMS IN ONE-DIMENSIONAL SPACE ....... 404 3.3
FIRST-ORDER EVOLUTION EQUATIONS ANDPARTIALLY SOLVABLE N-BODYPROBLEMS
WITHVELOCITY-INDEPENDENT FORCES .............. 408 IN NOTES TO CHAPTER 3
................................................................ 415 4.
-SOLVABLE AND/OR INTEGRABLE MANYM-BODYPROBLEMS IN THE PLANE, OBTAINEDBY
COMPLEXIFICATION ............................... 417 4.1 HOW TO OBTAINBY
COMPLEXIFICATION ROTATION-INVARIANT MANY-BODYMODELS INTHE PLANEFROM
CERTAINMANY-BODY PROBLEMS ON THE LINE
............................................................... 418 4.2
EXAMPLE: A FAMILYOFSOLVABLEMANY-BODYPROBLEMS IN THE
PLANE.............................................................................
428 4.2.1 ORIGINOFTHEMODELANDTECHNIQUE OFSOLUTION ........... 429 4.2.2
THE GENERIC MODEL; BEHAVIOR IN THE REMOTE PAST AND FATURE
........................................... ........................ 432
4.2.3 SOME SPECIAL CASES: MODELS WITHA LIMIT CYCLE, MODELS WITH
CONFINEDANDPERIODIC MOTIONS, HAMILTONIAN MODELS,
TRANSLATION-INVARIANTMODELS, MODELS FEATURING EQUILIBRIUMAND SPIRALING
CONFIGURATIONS, MODELS FEATURING ONLY COMPLETELY PERIODICMOTIONS
............... 435 4.2.4 THE SIMPLESTMODEL: EXPLICIT SOLUTION (THEGAME
OFMUSICAL CHAIRS), HAMILTONIAN STRUCTURE.. 448 4.2.5 THE SIMPLESTMODEL
FEATURING ONLY COMPLETELY PERIODIC MOTIONS
......................................................... 453 4.2.6
FIRST-ORDER EVOLUTION EQUATIONS, AND A PARTIALLY
SOLVABLEMANY-BODYPROBLEMWITHVELOCITY- INDEPENDENT FORCES, IN THE PLANE
................................ 456 XVI 4.3 EXAMPLES: OTHER FAMILIES
OFSOLVABLEMANY -BODYPROBLEMS IN
THEPLANE.............................................................................
459 4.3.1 A RESCALING-INVARIANT SOLVABLE ONE-DITNENSIONAL
MANY-BODYPROBLEM.................................................... 462
4.3.2 ARESCALING- AND TRANSLATION-INVARIANT SOLVABLE
ONE-DIMENSIONALMANY-BODYPROBLEM ........................ 467 4.3.3
ANOTHERRESCALING-INVARIANT SOLVABLE ONE-DIMENSIONAL MANY-BODYPROBLEM
....................... 469 4.4 SURVEY OFSOLVABLE AND/OR
INTEGRABLEMANY-BODYPROBLEMS IN THE PLANE OBTAINEDBY COMPLEXIFICATION
............................. 471 4.4.1 EXAMPLE ONE
............................................................... 472
4.4.2 EXAMPLE TWO
............................................................... 474
4.4.3 EXAMPLE THREE
............................................................. 476 4.4.4
EXAMPLE FOUR
.............................................................. 479 4.4.5
EXAMPLE FIVE
............................................................... 481
4.4.6 EXAMPLE SIX
................................................................ 482
4.4.7 EXAMPLE SEVEN
............................................................ 485 4.4.8
EXAMPLE EIGHT ......................................................1
...... 489 4.4.9 EXAMPLE NINE
.............................................................. 491
4.4.10AHAMILTONIAN EXAMPLE..............................................
493 4.5 A MANY-ROTATOR, POSSIBLYNONINTEGRABLE, PROBLEM IN THE PLANE, AND
ITS PERIODIC MOTIONS ...................... 494 4.6 OUTLOOK
..................................................................................
509 4.N NOTES TO CHAPTER4
................................................................. 509 5.
MANY-BODY SYSTEMS IN ORDINARY (THREE-DIMENSIONAL) SPACE: SOLVABLE,
INTEGRABLE, LINEARIZABLEPROBLEMS ............................... 511 5.1
A SIMPLE EXAMPLE: A SOLVABLE MATRIXPROBLEM, AND THE CORRESPONDING
ONE-BODYPROBLEM IN THREE-DIMENSIONAL SPACE
......................................................... 512 5.2
ANOTHER SIMPLE EXAMPLE: A LINEARIZABLE MATRIX PROBLEM, AND THE
CORRESPONDING ONE-BODYPROBLEM IN THREE-DIMENSIONAL SPACE
......................................................... 520 5.2.1
MOTIONOFAMAGNETIC MONOPOLE INA CENTRAL ELECTRIC FIELD
............................................. 535 5.2.2 MOTION
OFAMAGNETICMONOPOLE IN A CENTRALCOULOMB FIELD
.......................................... 543 5.2.3 SOLVABLE CASES
OFTHE (2X2)-MATRIX EVOLUTION EQUATION 0=2A6+BU+C[ U2 U ]
............................. 550 5.3 ASSOCIATION, COMPLEXIFICATION,
MULTIPLICATION: SOLVABLE FEW ANDMANY-BODYPROBLEMS OBTAINED FROM THE
PREVIOUS ONES. 553 5.4 A SURVEY OFMATRIX EVOLUTION EQUATIONS AMENABLE TO
EXACT TREATMENTS
................................................................. 569
XVII 5.4.1 A CLASS OFLINEARIZABLE MATRIX EVOLUTION EQUATIONS ..... 570
5.4.2 SOME INTEGRABLE MATRIX EVOLUTION EQUATIONS RELATED TO
THENONABELIANTODA LATTICE ................................... 585 5.4.3
SOME OTHERMATRIX EVOLUTION EQUATIONS AMENABLE TO EXACT TREATMENTS
...................................................... 590 5.4.4 ON THE
INTEGRABILITY OFTHE MATRIX EVOLUTION EQUATION F(D ................. 598
5.5 PARAMETRIZATION OFMATRICES VIATHREE-VECTORS ........................
605 5.6 A SURVEY OFN-BODY SYSTEMS INTHREE-DIMENSIONAL SPACE AMENABLE TO
EXACTTREATMENTS .............................................. 613 5.6.1
FEW-BODYPROBLEMS OFNEWTONIANTYPE ..................... 614 5.6.2
FEW-BODYPROBLEMS OFHAMILTONIANTYPE ................... 626 5.6.3
MANY-BODYPROBLEMS OFNEWTONIAN TYPE ................... 628 5.6.4
MANY-BODYPROBLEMS OFHAMILTONIAN TYPE................. 641 5.6.5
MANY-BODYPROBLEMS INMULTIDIMENSIONAL SPACE WITH VELOCITY-INDEPENDENT
FORCES: INTEGRABLEUNHARMONIC C QUARTIC ) OSCILLATORS, ANDNONINTEGRABLE
OSCILLATORS WITH LOTS OFCOMPLETELYPERIODIC MOTIONS ...................
645 5.7 OUTLOOK
..................................................................................
661 5.N NOTES TO CHAPTER 5
................................................................. 662
APPENDIXA: ELLIPTIC FUNCTIONS
........................................................ 663 A.N NOTES
TO APPENDIXA
............................................................ 673
APPENDIX B: FUNCTIONAL EQUATIONS
.................................................. 675 B.N NOTES TO
APPENDIXB ....0.......................................................
684 APPENDIX C: HERMITE POLYNOMIALS: ZEROS, DETERMINANTAL
REPRESENTATIONS .........0............................. 685 C.N NOTES TO
APPENDIXC ............................................................
688 APPENDIX D: REMARKABLE MATRICES AND RELATED IDENTITIES ............
689 D.N NOTES TO APPENDIXD
............................................................ 702
APPENDIXE: LAGRANGIAN APPROXIMATION FOR EIGENVALUE PROBLEMS IN ONE
ANDMORE DIMENSIONS ...................................... 703 E.N NOTES
TO APPENDIXE
............................................................ 707
APPENDIXF: SOMETHEOREMS OFELEMENTARY GEOMETRY IN MULTIDIMENSIONS
..........0...........................................................
708 APPENDIX G: ASYMPTOTIC BEHAVIOR OFTHE ZEROS OFAPOLYNOMIAL WHOSE
COEFFICIENTS DIVERGE EXPONENTIARY................................... 723
APPENDIXH: SOME FORMULAS FOR PAULI MATRICES AND THREE-VECTORS 732
REFERENCES
..........................................................................................
735 XVIII
|
any_adam_object | 1 |
author | Calogero, Francesco 1935- |
author_GND | (DE-588)112739245 |
author_facet | Calogero, Francesco 1935- |
author_role | aut |
author_sort | Calogero, Francesco 1935- |
author_variant | f c fc |
building | Verbundindex |
bvnumber | BV013617491 |
callnumber-first | Q - Science |
callnumber-label | QB362 |
callnumber-raw | QB362.M3 |
callnumber-search | QB362.M3 |
callnumber-sort | QB 3362 M3 |
callnumber-subject | QB - Astronomy |
classification_rvk | UD 8221 UL 1000 |
classification_tum | PHY 200f PHY 026f |
ctrlnum | (OCoLC)46456270 (DE-599)BVBBV013617491 |
dewey-full | 521 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 521 - Celestial mechanics |
dewey-raw | 521 |
dewey-search | 521 |
dewey-sort | 3521 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01919nam a2200481 cb4500</leader><controlfield tag="001">BV013617491</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010226s2001 gw |||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960885773</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540417648</subfield><subfield code="c">Pp. : DM 149.00</subfield><subfield code="9">3-540-41764-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46456270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013617491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB362.M3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">521</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8221</subfield><subfield code="0">(DE-625)145544:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UL 1000</subfield><subfield code="0">(DE-625)145815:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 026f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Calogero, Francesco</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112739245</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical many body problems amenable to exact treatments</subfield><subfield code="b">(solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space</subfield><subfield code="c">Francesco Calogero</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 749 S.</subfield><subfield code="b">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics : New series M, monographs</subfield><subfield code="v">66</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 735 - 749</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problème des N corps</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problème des N corps</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Many-body problem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">New series M, monographs ; 66</subfield><subfield code="w">(DE-604)BV021852221</subfield><subfield code="9">66</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009304063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009304063</subfield></datafield></record></collection> |
id | DE-604.BV013617491 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:49:04Z |
institution | BVB |
isbn | 3540417648 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009304063 |
oclc_num | 46456270 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-634 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-634 DE-11 |
physical | XVIII, 749 S. 24 cm |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics : New series M, monographs Physics and astronomy online library |
spelling | Calogero, Francesco 1935- Verfasser (DE-588)112739245 aut Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space Francesco Calogero Berlin [u.a.] Springer 2001 XVIII, 749 S. 24 cm txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics : New series M, monographs 66 Physics and astronomy online library Literaturverz. S. 735 - 749 Problème des N corps Problème des N corps ram Many-body problem Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 s DE-604 Lecture notes in physics New series M, monographs ; 66 (DE-604)BV021852221 66 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009304063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Calogero, Francesco 1935- Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space Lecture notes in physics Problème des N corps Problème des N corps ram Many-body problem Vielkörperproblem (DE-588)4078900-7 gnd |
subject_GND | (DE-588)4078900-7 |
title | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space |
title_auth | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space |
title_exact_search | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space |
title_full | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space Francesco Calogero |
title_fullStr | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space Francesco Calogero |
title_full_unstemmed | Classical many body problems amenable to exact treatments (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space Francesco Calogero |
title_short | Classical many body problems amenable to exact treatments |
title_sort | classical many body problems amenable to exact treatments solvable and or integrable and or linearizable in one two and three dimensional space |
title_sub | (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space |
topic | Problème des N corps Problème des N corps ram Many-body problem Vielkörperproblem (DE-588)4078900-7 gnd |
topic_facet | Problème des N corps Many-body problem Vielkörperproblem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009304063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021852221 |
work_keys_str_mv | AT calogerofrancesco classicalmanybodyproblemsamenabletoexacttreatmentssolvableandorintegrableandorlinearizableinonetwoandthreedimensionalspace |