Metric fixed point theory for multivalued mappings:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Polska Akad. Nauk, Inst. Matematyczny
2000
|
Schriftenreihe: | Dissertationes mathematicae
389 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 39 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013555205 | ||
003 | DE-604 | ||
005 | 20011116 | ||
007 | t | ||
008 | 010126s2000 |||| 00||| eng d | ||
035 | |a (OCoLC)45906517 | ||
035 | |a (DE-599)BVBBV013555205 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-91G |a DE-29T |a DE-12 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA1 | |
082 | 0 | |a 515.7248 |2 21 | |
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a MAT 001d |2 stub | ||
100 | 1 | |a Xu, Hong-Kun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Metric fixed point theory for multivalued mappings |c Hong-Kun Xu |
264 | 1 | |a Warszawa |b Polska Akad. Nauk, Inst. Matematyczny |c 2000 | |
300 | |a 39 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 389 | |
650 | 4 | |a Fixed point theory | |
650 | 4 | |a Set-valued maps | |
650 | 0 | 7 | |a Fixpunktindex |0 (DE-588)4154498-5 |2 gnd |9 rswk-swf |
655 | 7 | |a Mehrdeutige Abbildung |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Mehrdeutige Abbildung |A f |
689 | 0 | 1 | |a Fixpunktindex |0 (DE-588)4154498-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Dissertationes mathematicae |v 389 |w (DE-604)BV000003039 |9 389 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009256906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-009256906 |
Datensatz im Suchindex
_version_ | 1804128353879326720 |
---|---|
adam_text | Titel: Metric fixed point theory for multivalued mappings
Autor: Xu, Hong-Kun
Jahr: 2000
CONTENTS
0. Introduction....................................................................................................................................................5
1. Multivalued contractions............................................................................................................................6
1.1. Nadler s theorem..................................................................................................................................q
1.2. Reich s problem...........................................................................................................7
1.3. Weakly inward contractions..............................................................................................................11
1.4. Local contractions................................................................................................................................16
2. Multivalued nonexpansive mappings......................................................................................................18
2.1. Asymptotic centers..............................................................................................................................18
2.2. The Kirk-Massa theorem..................................................................................................................21
2.3. Inwardness and weak inwardness....................................................................................................22
2.4. Open problems......................................................................................................................................26
3. Random multivalued mappings................................................................................................................26
3.1. Introduction and preliminaries........................................................................................................27
3.2. Random contractions..........................................................................................................................30
3.3. Random nonexpansive mappings....................................................................................................32
Bibliography........................................................................................................................................................37
Abstract
Some new and recent results on the fixed point theory of multivalued contractions and nonexp-
ansive mappings are presented.
Discussions concerning Reich s problem are included. Existence of fixed points for weakly
inward contractions is proved. Local contractions are also discussed.
The Kirk-Massa theorem is extended to inward multivalued nonexpansive mappings. Using
an inequality characteristic of uniform convexity, another proof of Lim s theorem on weakly
inward multivalued nonexpansive mappings in a uniformly convex Banach space is included.
The fixed point set function of a random contraction is proved to be measurable. Lim s fixed
point theorem for nonexpansive self-mappings in a uniformly convex Banach space is randomized.
Also, the fixed point set function of a single-valued random nonexpansive mapping in a uniformly
smooth Banach space is shown to be measurable.
2000 Mathematics Subject Classification: Primary 47H04, 47H40, 47H10, 47H09; Secondary
46B20, 54C60, 65H25.
Key words and phrases: multivalued contraction, local contraction, multivalued nonexpansive
mapping, random contraction, random nonexpansive mapping, fixed point, random fixed
point, inward, weakly inward, metric space, uniformly convex Banach space.
Received 9.9.1999; revised version 4.6.2000.
|
any_adam_object | 1 |
author | Xu, Hong-Kun |
author_facet | Xu, Hong-Kun |
author_role | aut |
author_sort | Xu, Hong-Kun |
author_variant | h k x hkx |
building | Verbundindex |
bvnumber | BV013555205 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 |
callnumber-search | QA1 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 390 |
classification_tum | MAT 001d |
ctrlnum | (OCoLC)45906517 (DE-599)BVBBV013555205 |
dewey-full | 515.7248 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7248 |
dewey-search | 515.7248 |
dewey-sort | 3515.7248 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01527nam a2200421 cb4500</leader><controlfield tag="001">BV013555205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010126s2000 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45906517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013555205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7248</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 001d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Hong-Kun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metric fixed point theory for multivalued mappings</subfield><subfield code="c">Hong-Kun Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Polska Akad. Nauk, Inst. Matematyczny</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">39 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">389</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued maps</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunktindex</subfield><subfield code="0">(DE-588)4154498-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Mehrdeutige Abbildung</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrdeutige Abbildung</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fixpunktindex</subfield><subfield code="0">(DE-588)4154498-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">389</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">389</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009256906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009256906</subfield></datafield></record></collection> |
genre | Mehrdeutige Abbildung gnd |
genre_facet | Mehrdeutige Abbildung |
id | DE-604.BV013555205 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:47:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009256906 |
oclc_num | 45906517 |
open_access_boolean | |
owner | DE-739 DE-91G DE-BY-TUM DE-29T DE-12 DE-703 DE-188 |
owner_facet | DE-739 DE-91G DE-BY-TUM DE-29T DE-12 DE-703 DE-188 |
physical | 39 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Polska Akad. Nauk, Inst. Matematyczny |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Xu, Hong-Kun Verfasser aut Metric fixed point theory for multivalued mappings Hong-Kun Xu Warszawa Polska Akad. Nauk, Inst. Matematyczny 2000 39 S. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 389 Fixed point theory Set-valued maps Fixpunktindex (DE-588)4154498-5 gnd rswk-swf Mehrdeutige Abbildung gnd rswk-swf Mehrdeutige Abbildung f Fixpunktindex (DE-588)4154498-5 s DE-604 Dissertationes mathematicae 389 (DE-604)BV000003039 389 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009256906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Xu, Hong-Kun Metric fixed point theory for multivalued mappings Dissertationes mathematicae Fixed point theory Set-valued maps Fixpunktindex (DE-588)4154498-5 gnd |
subject_GND | (DE-588)4154498-5 |
title | Metric fixed point theory for multivalued mappings |
title_auth | Metric fixed point theory for multivalued mappings |
title_exact_search | Metric fixed point theory for multivalued mappings |
title_full | Metric fixed point theory for multivalued mappings Hong-Kun Xu |
title_fullStr | Metric fixed point theory for multivalued mappings Hong-Kun Xu |
title_full_unstemmed | Metric fixed point theory for multivalued mappings Hong-Kun Xu |
title_short | Metric fixed point theory for multivalued mappings |
title_sort | metric fixed point theory for multivalued mappings |
topic | Fixed point theory Set-valued maps Fixpunktindex (DE-588)4154498-5 gnd |
topic_facet | Fixed point theory Set-valued maps Fixpunktindex Mehrdeutige Abbildung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009256906&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT xuhongkun metricfixedpointtheoryformultivaluedmappings |