Statistical and neural classifiers: an integrated approach to design
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2001
|
Schriftenreihe: | Advances in pattern recognition
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 289 S. graph. Darst. |
ISBN: | 1852332972 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV013499429 | ||
003 | DE-604 | ||
005 | 20020416 | ||
007 | t | ||
008 | 001212s2001 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 959725539 |2 DE-101 | |
020 | |a 1852332972 |9 1-85233-297-2 | ||
035 | |a (OCoLC)44883853 | ||
035 | |a (DE-599)BVBBV013499429 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-29T |a DE-91G |a DE-525 | ||
050 | 0 | |a TK7882.P3 | |
082 | 0 | |a 006.4 |2 21 | |
084 | |a DAT 770f |2 stub | ||
084 | |a DAT 717f |2 stub | ||
100 | 1 | |a Raudys, Šarūnas |d 1941- |e Verfasser |0 (DE-588)122324129 |4 aut | |
245 | 1 | 0 | |a Statistical and neural classifiers |b an integrated approach to design |c Šarūnas Raudys |
264 | 1 | |a London [u.a.] |b Springer |c 2001 | |
300 | |a XXIII, 289 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advances in pattern recognition | |
650 | 7 | |a Intelligence artificielle |2 ram | |
650 | 7 | |a Reconnaissance des formes (informatique) |2 ram | |
650 | 7 | |a algorithme classification |2 inriac | |
650 | 7 | |a classification forme |2 inriac | |
650 | 7 | |a conception classificateur |2 inriac | |
650 | 7 | |a décision statistique |2 inriac | |
650 | 7 | |a méthode statistique |2 inriac | |
650 | 7 | |a réseau neuronal artificiel |2 inriac | |
650 | 7 | |a réseau neuronal |2 inriac | |
650 | 7 | |a système classification |2 inriac | |
650 | 7 | |a télédétection |2 inriac | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Pattern recognition systems | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 0 | 2 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 3 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009214721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009214721 |
Datensatz im Suchindex
_version_ | 1804128290426847232 |
---|---|
adam_text | Titel: Statistical and neural classifiers
Autor: Raudys, Šarūnas
Jahr: 2001
Contents
Abbreviations and Notations................................................................................................................xxi
1. Quick Overview........................................................................................................................................1
1.1 The Classifier Design Problem ................................................ 1
1.2 Single Layer and Multilayer Perceptrons........................................................................7
1.3 The SLP as the Euclidean Distance and the Fisher Linear Classifiers ... 10
1.4 The Generalisation Error of the EDC and the Fisher DF....................................12
1.5 Optimal Complexity - The Scissors Effect..................................................................18
1.6 Overtraining in Neural Networks........................................................................................22
1.7 Bibliographical and Historical Remarks........................................................................25
2. Taxonomy of Pattern Classification Algorithms........................................................27
2.1 Principles of Statistical Decision Theory........................................................................27
2.2 Four Parametric Statistical Classifiers..............................................................................31
2.2.1 The Quadratic Discriminant Function..................................................................31
2.2.2 The Standard Fisher Linear Discriminant Function................................32
2.2.3 The Euclidean Distance Classifier.......................................................33
2.2.4 The Anderson-Bahadur Linear DF ....................................................................34
2.3 Structures of the Covariance Matrices ............................................................................34
2.3.1 A Set of Standard Assumptions................................................................................35
2.3.2 Block Diagonal Matrices..............................................................................................36
2.3.3 The Tree Type Dependence Models....................................................................37
2.3.4 Temporal Dependence Models....................................................................................38
2.4 The Bayes Predictive Approach to Design Optimal
Classification Rules........................................................................................................................39
2.4.1 A General Theory................................................................................................................39
2.4.2 Learning the Mean Vector.....................................................................................40
2.4.3 Learning the Mean Vector and CM........................................................................42
2.4.4 Qualities and Shortcomings..........................................................................................42
2.5. Modifications of the Standard Linear and Quadratic DF..................................43
2.5.1 A Pseudo-Inversion of the Covariance Matrix ............................................43
2.5.2 Regularised Discriminant Analysis (RDA)......................................................45
2.5.3 Scaled Rotation Regularisation ..............................................................................46
2.5.4 Non-Gausian Densities....................................................................................................46
2.5.5 Robust Discriminant Analysis......................................................................................47
xvi
Contents
2.6 Nonparametric Local Statistical Classifiers .......................*..................^
2.6.1 Methods Based on Mixtures of Densities............................
2.6.2 Piecewise-Linear Classifiers...........................................
2.6.3 The Parzen Window Classifier..............................................................................^
2.6.4 The k-NN Rule and a Calculation Speed ...........................................................55
2.6.5 Polynomial and Potential Function Classifiers................................50
2.7 Minimum Empirical Error and Maximal Margin Linear Classifiers .... 57
2.7.1 The Minimum Empirical Error Classifier........................................................57
2.7.2 The Maximal Margin Classifier..............................................................................5°
2.7.3 The Support Vector Machine....................................................................................59
2.8 Piecewise-Linear Classifiers..................................................
2.8.1 Multimodal Density Based Classifiers................................................................61
2.8.2 Architectural Approach to Design of the Classifiers....................63
2.8.3 Decision Tree Classifiers..............................................................................................63
2.9 Classifiers for Categorical Data............................................................................................66
2.9.1 Multinomial Classifiers......................................................................................................66
2.9.2 Estimation of Parameters..............................................................................................68
2.9.3 Decision Tree and the Multinomial Classifiers............................................69
2.9.4 Linear Classifiers............................................................................................................70
2.9.5 Nonparametric Local Classifiers.................................................71
2.10 Bibliographical and Historical Remarks....................................................................71
3. Performance and the Generalisation Error..................................................................77
3.1 Bayes, Conditional, Expected, and Asymptotic Probabilities of
Misclassification................................................................................................................................78
3.1.1 The Bayes Probability of Misclassification....................................................78
3.1.2 The Conditional Probability of Misclassification......................................78
3.1.3 The Expected Probability of Misclassification............................................79
3.1.4 The Asymptotic Probability of Misclassification........................................79
3.1.5 Learning Curves: An Overview of Different Analysis Methods 81
3.1.6 Error Estimation...............................................................................83
3.2 Generalisation Error of the Euclidean Distance Classifier..............83
3.2.1 The Classification Algorithm....................................................................................83
3.2.2Double Asymptotics in the Error Analysis......................................................84
3.2.3 The Spherical Gaussian Case......................................................................................86
3.2.3.1 The Case A2 = TVi...................................................86
3.2.3.2 The CaseN2*N ................................................................................................88
3.3 Most Favourable and Least Favourable Distributions of the Data............88
3.3.1 The Non-Spherical Gaussian Case..........................................................................89
3.3.2 The Most Favourable Distributions of the Data..........................................90
3.3.3 The Least Favourable Distributions of the Data..........................................90
3.3.4 Intrinsic Dimensionality................................................................................................91
3.4 Generalisation Errors for Modifications of the Standard
Linear Classifier..................................................................................92
3.4.1 The Standard Fisher Linear DF................................................92
3.4.2 The Double Asymptotics for the Expected Error......................................92
Contents xvii
3.4.3 The Conditional Probability of Misclassification......................................93
3.4.4 A Standard Deviation of the Conditional Error..........................................94
3.4.5 Favourable and Unfavourable Distributions..................................................94
3.4.6 Theory and Real-World Problems..................................... 95
3.4.7 The Linear Classifier D for the Diagonal CM........................ 96
3.4.8 The Pseudo-Fisher Classifier....................................................................................98
3.4.9 The Regularised Discriminant Analysis............................................................100
3.5 Common Parameters in Different Competing Pattern Classes.......... 102
3.5.1 The Generalisation Error of the Quadratic DF....................... 103
3.5.2 The Effect of Common Parameters in Two Competing Classes ... 103
3.5.3 Unequal Sample Sizes in Plug-In Classifiers......................... 105
3.6 Minimum Empirical Error and Maximal Margin Classifiers............. 107
3.6.1 Favourable Distributions of the Pattern Classes.....................108
3.6.2 VC Bounds for the Conditional Generalisation Error............... 108
3.6.3 Unfavourable Distributions for the Euclidean Distance and
Minimum Empirical Error Classifiers..................................Ill
3.6.4 Generalisation Error in the Spherical Gaussian Case.............. Ill
3.6.5 Intrinsic Dimensionality................................................ 116
3.6.6 The Influence of the Margin........................................... 116
3.6.7 Characteristics of the Learning Curves............................... 118
3.7 Parzen Window Classifier.................................................... 120
3.7.1 The Decision Boundary of the PW Classifier
with Spherical Kernels.................................................... 120
3.7.2 The Generalisation Error................................................ 122
3.7.3 Intrinsic Dimensionality................................................ 123
3.7.4 Optimal Value of the Smoothing Parameter......................... 124
3.7.5 The k-NN Rule............................................................ 127
3.8 Multinomial Classifier.........................................................128
3.9 Bibliographical and Historical Remarks.................................... 132
4. Neural Network Classifiers....................................................... 135
4.1 Training Dynamics of the Single Layer Perceptron........................ 135
4.1.1 The SLP and its Training Rule........................................ 135
4.1.2 The SLP as Statistical Classifier........................................136
4.1.2.1 The Euclidean Distance Classifier........................................................136
4.1.2.2 The Regularised Discriminant Analysis............................................138
4.1.2.3 The Standard Linear Fisher Classifier................................................139
4.1.2.4 The Pseudo-Fisher Classifier......................................................................139
4.1.2.5 Dynamics of the Magnitudes of the Weights................................140
4.1.2.6 The Robust Discriminant Analysis......................................................141
4.1.2.7 The Minimum Empirical Error Classifier......................................141
4.1.2.8 The Maximum Margin (Support Vector) Classifier................142
4.1.3 Training Dynamics and Generalisation..............................................................142
4.2 Non-linear Decision Boundaries............................................................................................145
4.2.1 The SLP in Transformed Feature Space.............................. 145
4.2.2 The MLP Classifier...................................................... 147
xviii
Contents
4.2.3 Radial Basis-Function Networks.......................................
4.2.4 Learning Vector Quantisation Networks.............................
4.3 Training Peculiarities of the Perceptrons....................................
4.3.1 Cost Function Surfaces of the SLP Classifier........................
4.3.2 Cost Function Surfaces of the MLP Classifier.......................
4.3.3 The Gradient Minimisation of the Cost Function...................
4.4 Generalisation of the Perceptrons............................................
4.4.1 Single Layer Perceptron................................................
4.4.1.1 Theoretical Background.......................................
4.4.1.2 The Experiment Design........................................ 151
4.4.1.3 The SLP and Parametric Classifiers.......................... 15»
4.4.1.4 The SLP and Structural (Nonparametric) Classifiers....... 160
4.4.2 Multilayer Perceptron.................................................... ^
4.4.2.1 Weights of the Hidden Layer Neurones are
Common for all Outputs....................................... *62
4.4.2.2 Intrinsic Dimensionality Problems........................... 164
4.4.2.3 An Effective Capacity of the Network....................... 166
4.5 Overtraining and Initialisation................................................ 167
4.5.1 Overtraining.............................................................. 1
4.5.2 Effect of Initial Values .................................................. 169
4.6 Tools to Control Complexity..................................................193
4.6.1 The Number of Iterations............................................... 194
4.6.2 The Weight Decay Term................................................ 194
4.6.3 The Antiregularisation Technique.................................... 195
4.6.4 Noise Injection.......................................................... 196
4.6.4.1 Noise Injection into Inputs............................... 196
4.6.4.2 Noise Injection into the Weights and into
the Outputs of the Network..................................... 198
4.6.4.3 Coloured Noise Injection into Inputs...................... 198
4.6.5 Control of Target Values................................................ 179
4.6.6 The Learning Step....................................................... 179
4.6.7 Optimal Values of the Training Parameters.......................... 181
4.6.8 Learning Step in the Hidden Layer of MLP.......................... 182
4.6.9 Sigmoid Scaling......................................................... 184
4.7 The Co-Operation of the Neural Networks..................................185
4.7.1 The Boss Decision Rule................................................ 185
4.7.2 Small Sample Problems and Regularisation.......................... 188
4.8 Bibliographical and Historical Remarks..................................... 189
5. Integration of Statistical and Neural Approaches........................... 191
5.1 Statistical Methods or Neural Nets?.....................................................................191
5.2 Positive and Negative Attributes of Statistical Pattern Recognition .... 192
5.3 Positive and Negative Attributes of Artificial Neural Networks......... 193
5.4 Merging Statistical Classifiers and Neural Networks..................... 194
5.4.1 Three Key Points in the Solution...................................... 194
5.4.2 Data Transformation or Statistical Classifier?........................ 195
5.4.3 The Training Speed and Data Whitening Transformation.......... 196
Contents xix
5.4.4 Dynamics of the Classifier after the
Data Whitening Transformation....................................... 197
5.5 Data Transformations for the Integrated Approach........................ 198
5.5.1 Linear Transformations................................................. 198
5.5.2 Non-linear Transformations............................................. 200
5.5.3 Performance of the Integrated Classifiers in Solving
Real-World Problems.................................................. 202
5.6 The Statistical Approach in Multilayer Feed-forward Networks.........204
5.7 Concluding and Bibliographical Remarks.................................. 205
6. Model Selection .................................................................... 209
6.1 Classification Errors and their Estimation Methods........................210
6.1.1 Types of Classification Error...........................................210
6.1.2 Taxonomy of Error Rate Estimation Methods....................... 211
6.1.2.1 Methods for Splitting the Design Set into
Training and Validation Sets..................................211
6.1.2.2 Practical Aspects of using the Leave-One-Out Method ... 214
6.1.2.3 Pattern Error Functions.........................................215
6.2 Simplified Performance Measures........................................... 218
6.2.1 Performance Criteria for Feature Extraction.......................... 219
6.2.1.1 Unsupervised Feature Extraction.............................219
6.2.1.2 Supervised Feature Extraction.................................221
6.2.2 Performance Criteria for Feature Selection.......................... 222
6.2.3 Feature Selection Strategies............................................ 224
6.3 Accuracy of Performance Estimates......................................... 226
6.3.1 Error Counting Estimates............................................... 226
6.3.1.1 The Hold-Out Method......................................... 226
6.3.1.2 The Resubstitution Estimator................................. 228
6.3.1.3 The Leaving-One-Out Estimator............................. 230
6.3.1.4 The Bootstrap Estimator....................................... 230
6.3.2 Parametric Estimators for the Linear Fisher Classifier............. 231
6.3.3 Associations Between the Classification Performance Measures . 232
6.4 Feature Ranking and the Optimal Number of Features ................... 235
6.4.1 The Complexity of the Classifiers......................................235
6.4.2 Feature Ranking...........................................................237
6.4.3 Determining the Optimal Number of Features...................... 239
6.5 The Accuracy of the Model Selection........................................ 240
6.5.1 True, Apparent and Ideal Classification Errors..................... 240
6.5.2 An Effect of the Number of Variants..................................243
6.5.3 Evaluation of the Bias................................................. 248
6.6 Additional Bibliographical Remarks........................................ 251
Appendices..............................................................................253
A.l Elements of Matrix Algebra.................................................253
A.2 The First Order Tree Type Dependence Model........................... 255
xx Contents
A.3 Temporal Dependence Models.............................................. 258
A.4 Pikelis Algorithm for Evaluating Means and Variances of
the True, Apparent and Ideal Errors in Model Selection................ 261
A.5 Matlab Codes (the Non-Linear SLP Training, the First Order
Tree Dependence Model, and Data Whitening Transformation)........ 262
References...............................................................................267
Index...................................................................................... 287
|
any_adam_object | 1 |
author | Raudys, Šarūnas 1941- |
author_GND | (DE-588)122324129 |
author_facet | Raudys, Šarūnas 1941- |
author_role | aut |
author_sort | Raudys, Šarūnas 1941- |
author_variant | š r šr |
building | Verbundindex |
bvnumber | BV013499429 |
callnumber-first | T - Technology |
callnumber-label | TK7882 |
callnumber-raw | TK7882.P3 |
callnumber-search | TK7882.P3 |
callnumber-sort | TK 47882 P3 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_tum | DAT 770f DAT 717f |
ctrlnum | (OCoLC)44883853 (DE-599)BVBBV013499429 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02436nam a22006258c 4500</leader><controlfield tag="001">BV013499429</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020416 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001212s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959725539</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852332972</subfield><subfield code="9">1-85233-297-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44883853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013499429</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-525</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7882.P3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raudys, Šarūnas</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122324129</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical and neural classifiers</subfield><subfield code="b">an integrated approach to design</subfield><subfield code="c">Šarūnas Raudys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 289 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligence artificielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reconnaissance des formes (informatique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithme classification</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">classification forme</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">conception classificateur</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">décision statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">réseau neuronal artificiel</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">réseau neuronal</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">système classification</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">télédétection</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009214721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009214721</subfield></datafield></record></collection> |
id | DE-604.BV013499429 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:46:54Z |
institution | BVB |
isbn | 1852332972 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009214721 |
oclc_num | 44883853 |
open_access_boolean | |
owner | DE-739 DE-29T DE-91G DE-BY-TUM DE-525 |
owner_facet | DE-739 DE-29T DE-91G DE-BY-TUM DE-525 |
physical | XXIII, 289 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series2 | Advances in pattern recognition |
spelling | Raudys, Šarūnas 1941- Verfasser (DE-588)122324129 aut Statistical and neural classifiers an integrated approach to design Šarūnas Raudys London [u.a.] Springer 2001 XXIII, 289 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advances in pattern recognition Intelligence artificielle ram Reconnaissance des formes (informatique) ram algorithme classification inriac classification forme inriac conception classificateur inriac décision statistique inriac méthode statistique inriac réseau neuronal artificiel inriac réseau neuronal inriac système classification inriac télédétection inriac Künstliche Intelligenz Neural networks (Computer science) Pattern recognition systems Statistik (DE-588)4056995-0 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s Automatische Klassifikation (DE-588)4120957-6 s Neuronales Netz (DE-588)4226127-2 s Statistik (DE-588)4056995-0 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009214721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Raudys, Šarūnas 1941- Statistical and neural classifiers an integrated approach to design Intelligence artificielle ram Reconnaissance des formes (informatique) ram algorithme classification inriac classification forme inriac conception classificateur inriac décision statistique inriac méthode statistique inriac réseau neuronal artificiel inriac réseau neuronal inriac système classification inriac télédétection inriac Künstliche Intelligenz Neural networks (Computer science) Pattern recognition systems Statistik (DE-588)4056995-0 gnd Mustererkennung (DE-588)4040936-3 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4040936-3 (DE-588)4120957-6 (DE-588)4226127-2 |
title | Statistical and neural classifiers an integrated approach to design |
title_auth | Statistical and neural classifiers an integrated approach to design |
title_exact_search | Statistical and neural classifiers an integrated approach to design |
title_full | Statistical and neural classifiers an integrated approach to design Šarūnas Raudys |
title_fullStr | Statistical and neural classifiers an integrated approach to design Šarūnas Raudys |
title_full_unstemmed | Statistical and neural classifiers an integrated approach to design Šarūnas Raudys |
title_short | Statistical and neural classifiers |
title_sort | statistical and neural classifiers an integrated approach to design |
title_sub | an integrated approach to design |
topic | Intelligence artificielle ram Reconnaissance des formes (informatique) ram algorithme classification inriac classification forme inriac conception classificateur inriac décision statistique inriac méthode statistique inriac réseau neuronal artificiel inriac réseau neuronal inriac système classification inriac télédétection inriac Künstliche Intelligenz Neural networks (Computer science) Pattern recognition systems Statistik (DE-588)4056995-0 gnd Mustererkennung (DE-588)4040936-3 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Intelligence artificielle Reconnaissance des formes (informatique) algorithme classification classification forme conception classificateur décision statistique méthode statistique réseau neuronal artificiel réseau neuronal système classification télédétection Künstliche Intelligenz Neural networks (Computer science) Pattern recognition systems Statistik Mustererkennung Automatische Klassifikation Neuronales Netz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009214721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT raudyssarunas statisticalandneuralclassifiersanintegratedapproachtodesign |