The Kobayashi-Hitchin correspondence:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
1995
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 254 S. |
ISBN: | 9810221681 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013497174 | ||
003 | DE-604 | ||
005 | 20090824 | ||
007 | t | ||
008 | 001215s1995 |||| 00||| eng d | ||
020 | |a 9810221681 |9 981-02-2168-1 | ||
035 | |a (OCoLC)32852978 | ||
035 | |a (DE-599)BVBBV013497174 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
050 | 0 | |a QA601 | |
082 | 0 | |a 516.3/5 |2 20 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Lübke, Martin |d 1954- |e Verfasser |0 (DE-588)110161564 |4 aut | |
245 | 1 | 0 | |a The Kobayashi-Hitchin correspondence |c Martin Lübke ; Andrei Teleman |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 1995 | |
300 | |a VIII, 254 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Géométrie différentielle |2 ram | |
650 | 4 | |a Kobayashi-Hitchin, Correspondance de (Géométrie algébrique) | |
650 | 4 | |a Kobayashi-Hitchin correspondence (Algebraic geometry) | |
650 | 0 | 7 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |D s |
689 | 1 | 1 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Teleman, Andrei |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009212909&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009212909 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804128287875661824 |
---|---|
adam_text | THE KOBAYASHI-HITCHIN CORRESPONDENCE MARTIN LIIBKE DEPARTMENT OF
MATHEMATICS & COMPUTER SCIENCE LEIDEN UNIVERSITY ANDREI TELEMAN
INSTITUTE OF MATHEMATICS . ZURICH UNIVERSITY WORLD SCIENTIFIC SINGAPORE
*NEWJERSEY*LONDON HONG KONG TABLE OF CONTENTS. PREFACE V CHAPTER 0:
INTRODUCTION 1 CHAPTER 1: PREPARATIONS AND BASIC MATERIAL 18 1.1
HOLOMORPHIC STRUCTURES AND INTEGRABLE CONNECTIONS 18 1.2 GAUDUCHON
METRICS 29 1.3 DEGREE MAPS 33 1.4 STABILITY OF VECTOR BUNDLES 43 CHAPTER
2: HERMITIAN-EINSTEIN CONNECTIONS AND METRICS 46 2.1 DEFINITIONS AND
FIRST RESULTS 46 2.2 VANISHING THEOREM AND CHERN CLASS INEQUALITY 50 2.3
STABILITY OF HERMITIAN-EINSTEIN BUNDLES 54 CHAPTER 3: EXISTENCE OF
HERMITIAN-EINSTEIN METRICS IN STABLE BUNDLES.61 3.1 THE STRATEGY OF THE
PROOF 62 3.2 THE CONTINUITY METHOD: FIRST STEP 63 3.3 THE CONTINUITY
METHOD: SECOND STEP 71 3.4 THE CONSTRUCTION OF A DESTABILISING SUBSHEAF
81 CHAPTER 4: THE KOBAYASHI-HITCHIN CORRESPONDENCE 91 4.1 SUMMARY 91 4.2
MODULI SPACES OF CONNECTIONS 93 4.3 MODULI SPACES OF HOLOMORPHIC
STRUCTURES 108 4.4 ISOMORPHY OF MODULI SPACES 113 4.5 LOCAL MODELS 119
4.6 INSTANTONS AND HERMITIAN-EINSTEIN CONNECTIONS 130 CHAPTER 5:
APPLICATIONS 151 5.1 OPENNESS OF THE STABILITY PROPERTY 151 5.2
DEPENDENCE ON THE BASE METRIC 156 5.3 THE NATURAL HERMITIAN METRIC IN
THE MODULI SPACE 167 5.4 A PROOF OF BOGOMOLOV S THEOREM ON SURFACES OF
TYPE VIIO 179 VIII TABLE OF CONTENTS. CHAPTER 6: EXAMPLES OF MODULI
SPACES 190 6.1 THE ALGEBRAIC CASE 190 6.2 NON-KAHLER PRINCIPAL ELLIPTIC
FIBRE BUNDLES OVER CURVES 195 6.4 SL(2, C)-BUNDLES ON PRINCIPAL ELLIPTIC
BUNDLES OVER CURVES OF GENUS 1 ... 200 6.5 SL(2, C)-BUNDLES ON PRIMARY
ELLIPTIC HOPF SURFACES 211 CHAPTER 7: APPENDICES 217 7.1 HERMITIAN
GEOMETRY 217 7.2 ELLIPTIC OPERATORS 223 7.3 SOBOLEV SPACES 229 7.4 LOCAL
DIAGONALISATION 234 .7.5 ANALYTIC SUBSPACES OF A BANACH MANIFOLD 239
BIBLIOGRAPHY 242 NOTATIONS 251 INDEX 253
|
any_adam_object | 1 |
author | Lübke, Martin 1954- Teleman, Andrei |
author_GND | (DE-588)110161564 |
author_facet | Lübke, Martin 1954- Teleman, Andrei |
author_role | aut aut |
author_sort | Lübke, Martin 1954- |
author_variant | m l ml a t at |
building | Verbundindex |
bvnumber | BV013497174 |
callnumber-first | Q - Science |
callnumber-label | QA601 |
callnumber-raw | QA601 |
callnumber-search | QA601 |
callnumber-sort | QA 3601 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
ctrlnum | (OCoLC)32852978 (DE-599)BVBBV013497174 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01976nam a2200469 c 4500</leader><controlfield tag="001">BV013497174</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090824 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001215s1995 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810221681</subfield><subfield code="9">981-02-2168-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32852978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013497174</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA601</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lübke, Martin</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110161564</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Kobayashi-Hitchin correspondence</subfield><subfield code="c">Martin Lübke ; Andrei Teleman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 254 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie différentielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kobayashi-Hitchin, Correspondance de (Géométrie algébrique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kobayashi-Hitchin correspondence (Algebraic geometry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teleman, Andrei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009212909&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009212909</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013497174 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:46:51Z |
institution | BVB |
isbn | 9810221681 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009212909 |
oclc_num | 32852978 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | VIII, 254 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific |
record_format | marc |
spelling | Lübke, Martin 1954- Verfasser (DE-588)110161564 aut The Kobayashi-Hitchin correspondence Martin Lübke ; Andrei Teleman Singapore [u.a.] World Scientific 1995 VIII, 254 S. txt rdacontent n rdamedia nc rdacarrier Géométrie différentielle ram Kobayashi-Hitchin, Correspondance de (Géométrie algébrique) Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 s DE-604 Komplexe Mannigfaltigkeit (DE-588)4031996-9 s 1\p DE-604 Teleman, Andrei Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009212909&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lübke, Martin 1954- Teleman, Andrei The Kobayashi-Hitchin correspondence Géométrie différentielle ram Kobayashi-Hitchin, Correspondance de (Géométrie algébrique) Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4159609-2 (DE-588)4031996-9 (DE-588)4001161-6 |
title | The Kobayashi-Hitchin correspondence |
title_auth | The Kobayashi-Hitchin correspondence |
title_exact_search | The Kobayashi-Hitchin correspondence |
title_full | The Kobayashi-Hitchin correspondence Martin Lübke ; Andrei Teleman |
title_fullStr | The Kobayashi-Hitchin correspondence Martin Lübke ; Andrei Teleman |
title_full_unstemmed | The Kobayashi-Hitchin correspondence Martin Lübke ; Andrei Teleman |
title_short | The Kobayashi-Hitchin correspondence |
title_sort | the kobayashi hitchin correspondence |
topic | Géométrie différentielle ram Kobayashi-Hitchin, Correspondance de (Géométrie algébrique) Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Géométrie différentielle Kobayashi-Hitchin, Correspondance de (Géométrie algébrique) Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel Komplexe Mannigfaltigkeit Algebraische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009212909&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lubkemartin thekobayashihitchincorrespondence AT telemanandrei thekobayashihitchincorrespondence |