A panoramic view of Riemannian geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 824 S. Ill., graph. Darst. |
ISBN: | 3540653171 9783642621215 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013430048 | ||
003 | DE-604 | ||
005 | 20230201 | ||
007 | t | ||
008 | 001113s2003 ad|| |||| 00||| eng d | ||
016 | 7 | |a 968623468 |2 DE-101 | |
020 | |a 3540653171 |9 3-540-65317-1 | ||
020 | |a 9783642621215 |9 9783642621215 | ||
035 | |a (OCoLC)249122081 | ||
035 | |a (DE-599)BVBBV013430048 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-384 |a DE-898 |a DE-355 |a DE-20 |a DE-91G |a DE-703 |a DE-M347 |a DE-19 |a DE-29T |a DE-634 |a DE-83 |a DE-11 |a DE-188 |a DE-706 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.373 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 537f |2 stub | ||
084 | |a 17,1 |2 ssgn | ||
084 | |a 53Axx |2 msc | ||
084 | |a 53Bxx |2 msc | ||
100 | 1 | |a Berger, Marcel |d 1927-2016 |e Verfasser |0 (DE-588)12047672X |4 aut | |
245 | 1 | 0 | |a A panoramic view of Riemannian geometry |c Marcel Berger |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2003 | |
300 | |a XXIII, 824 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Riemannsche Geometrie | |
650 | 4 | |a Geometry, Riemannian | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009165941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009165941 |
Datensatz im Suchindex
_version_ | 1804128220061106176 |
---|---|
adam_text | Contents
Euclidean Geometry
....................................... 1
l.ł
Preliminaries
.......................................... 2
1.2
Distance Geometry
..................................... 2
1.2.1
A Basic Formula
................................ 2
1.2.2
The Length of a Path
........................... 3
1.2.3
The First Variation Formula
and Application to Billiards
...................... 4
1.3
Plane Curves
.......................................... 9
1.3.1
Length
........................................ 9
1.3.2
Curvature
..................................... 12
1.4
Global Theory of Closed Plane Curves
.................... 18
1.4.1
Obvious Truths About Curves
Which are Hard to Prove
........................ 18
1.4.2
The Four Vertex Theorem
....................... 20
1.4.3
Convexity with Respect to Arc Length
............ 22
1.4.4 Umlaufsatz
with Corners
........................ 23
1.4.5
Heat Shrinking of Plane Curves
................... 24
і
.4.6
Arnol d s Revolution in Plane Curve Theory
....... 24
1.5
The Isoperimetric Inequality for Curves
................... 26
1.6
The Geometry of Surfaces Before and After
Gauß.......... 29
1.6.1
Inner Geometry: a First Attempt
................. 30
1.6.2
Looking for Shortest Curves: Geodesies
............ 33
1.6.3
The Second Fundamental Form
and Principal Curvatures
........................ 45
1.6.4
The Meaning of the Sign of
К
.................... 52
1.6.5
Global Surface Geometry
........................ 55
1.6.6
Minimal Surfaces
............................... 58
1.6.7
The Hartman-Nirenberg Theorem
for Inner Flat Surfaces
.......................... 62
1.6.8
The Isoperimetric Inequality in E3
à la
Gromov
___ 63
1.6.8.1
Notes
.................................. 66
1.7
Generic Surfaces
....................................... 66
1.8
Heat and Wave Analysis in E2
........................... 70
1.8.1
Planar Physics
................................. 70
1.8.1.1
Bibliographical Note
..................... 71
XII Contents
1.8.2
Why the Eigenvalue Problem?
.................... 71
1.8.3
Minimax
...................................... 75
1.8.4
Shape of a Drum
............................... 78
1.8.4.1
A Few Direct Problems
.................. 79
1.8.4.2
The Faber-Krahn Inequality
.............. 81
1.8.4.3
Inverse Problems
........................ 83
1.8.5
Heat
.......................................... 87
1.8.5.1
Eigenfunctions
.......................... 90
1.8.6
Relations Between the Two Spectra
............... 91
1.9
Heat and Waves in E3,Ed and on the Sphere
.............. 94
1.9.1
Euclidean Spaces
............................... 94
1.9.2
Spheres
........................................ 95
1.9.3
Billiards in Higher Dimensions
................... 97
1.9.4
The Wave Equation Versus the Heat Equation
...... 98
2
Transition
..................................................101
3
Surfaces from
Gauß
to Today
..............................105
3.1 Gauß.................................................105
3.1.1
Theorema
Egregium
............................105
3.1.1.1
The First Proof of
Gauß s
Theorema
Egregium; the Concept of ds2
.............106
3.1.1.2
Second Proof of the
Theorema
Egregium
... 109
3.1.2
The
Gauß-Bonnet
Formula
and the
Rodrigues-Gauß Map....................
Ill
3.1.3
Parallel Transport
..............................113
3.1.4
Inner Geometry
................................116
3.2
Alexandrov s Theorems
.................................120
3.2.1
Angle Corrections of Legendre and
Gauß
in Geodesy
.....................................123
3.3
Cut Loci
..............................................125
3.4
Global Surface Theory
..................................131
3.4.1
Bending Surfaces
...............................131
3.4.1.1
Bending Polyhedra
......................132
3.4.1.2
Bending and Wrinkling
with Little Smoothness
..................133
3.4.2
Mean Curvature Rigidity of the Sphere
............134
3.4.3
Negatively Curved Surfaces
......................135
3.4.4
The Willmore Conjecture
........................136
3.4.5
The Global
Gauß-Bonnet
Theorem for Surfaces
___136
3.4.6
The
Hopf
Index Formula
.........................139
Contents XIII
Riemann s
Blueprints
......................................143
4.1
Smooth Manifolds
.....................................143
4.1.1
Introduction
...................................143
4.1.2
The Need for Abstract Manifolds
.................146
4.1.3
Examples
......................................149
4.1.3.1
Submanifolds
...........................151
4.1.3.2
Products
...............................151
4.1.3.3
Lie Groups
.............................152
4.1.3.4
Homogeneous Spaces
....................152
4.1.3.5
Grassmannians over Various Algebras
......153
4.1.3.6
Gluing
.................................156
4.1.4
The Classification of Manifolds
...................157
4.1.4.1
Surfaces
...............................158
4.1.4.2
Higher Dimensions
......................159
4.1.4.3
Embedding Manifolds in Euclidean Space
.. 161
4.2
Calculus on Manifolds
..................................162
4.2.1
Tangent Spaces and the Tangent Bundle
...........162
4.2.2
Differential Forms and Exterior Calculus
...........166
4.3
Examples of Riemann s Definition
........................172
4.3.1
Riemann s Definition
............................172
4.3.2
Hyperbolic Geometry
...........................176
4.3.3
Products, Coverings and Quotients
................183
4.3.3.1
Products
...............................183
4.3.3.2
Coverings
..............................184
4.3.4
Homogeneous Spaces
............................186
4.3.5
Symmetric Spaces
..............................189
4.3.5.1
Classification
...........................192
4.3.5.2
Rank
..................................193
4.3.6
Riemannian Submersions
........................194
4.3.7
Gluing and Surgery
.............................196
4.3.7.1
Gluing of Hyperbolic Surfaces
............196
4.3.7.2
Higher Dimensional Gluing
...............198
4.3.8
Classical Mechanics
.............................199
4.4
The Riemann Curvature Tensor
.........................200
4.4.1
Discovery and Definition
.........................200
4.4.2
The Sectional Curvature
.........................204
4.4.3
Standard Examples
.............................207
4.4.3.1
Constant Sectional Curvature
.............207
4.4.3.2
Projective Spaces
KP ...................209
4.4.3.3
Products
...............................209
4.4.3.4
Homogeneous Spaces
....................210
4.4.3.5
Hypersurfaces in Euclidean Space
.........211
XIV Contents
4.5
A Naive Question: Does the Curvature
Determine the Metric?
..................................213
4.5.1
Surfaces
.......................................214
4.5.2
Any Dimension
.................................215
4.6
Abstract Riemannian Manifolds
.........................216
4.6.1
Isometrically Embedding Surfaces in E3
...........217
4.6.2
Local Isometric Embedding of Surfaces in E3
.......217
4.6.3
Isometric Embedding in Higher Dimensions
........218
5
A One Page Panorama
.....................................219
6
Metric Geometry and Curvature
...........................221
6.1
First Metric Properties
.................................222
6.1.1
Local Properties
................................222
6.1.2
Hopf-Rinow and
de Rham
Theorems
..............226
6.1.2.1
Products
...............................229
6.1.3
Convexity and Small Balls
.......................229
6.1.4
Totally Geodesic Submanifolds
...................231
6.1.5
Center of Mass
.................................233
6.1.6
Examples of Geodesies
..........................235
6.1.7
Transition
.....................................238
6.2
First Technical Tools
...................................239
6.3
Second Technical Tools
.................................248
6.3.1
Exponential Map
...............................248
6.3.1.1
Rank
..................................250
6.3.2
Space Forms
...................................251
6.3.3
Nonpositive
Curvature
..........................254
6.4
Triangle Comparison Theorems
..........................257
6.4.1
Bounded Sectional Curvature
....................257
6.4.2
Ricci
Lower Bound
..............................262
6.4.3
Philosophy Behind These Bounds
.................267
6.5
Injectivity, Convexity Radius and Cut Locus
..............268
6.5.1
Definition of Cut Points and Injectivity Radius
.....268
6.5.2 Klingenberg
and Cheeger Theorems
...............272
6.5.3
Convexity Radius
...............................278
6.5.4
Cut Locus
.....................................278
6.5.5
Blaschke Manifolds
.............................285
6.6
Geometric Hierarchy
...................................286
6.6.1
The Geometric Hierarchy
........................289
6.6.1.1
Space Forms
............................289
6.6.1.2
Rank
1
Symmetric Spaces
................289
6.6.1.3
Measure Isotropy
........................289
6.6.1.4
Symmetric Spaces
.......................290
6.6.1.5
Homogeneous Spaces
....................290
Contents
XV
6.6.2
Constant
Sectional Curvature
....................290
6.6.2.1
Negatively Curved Space Forms
in Three and Higher Dimensions
..........292
6.6.2.2
Mostów
Rigidity
........................293
6.6.2.3
Classification of Arithmetic
and Nonarithmetic Negatively Curved
Space Forms
............................294
6.6.2.4
Volumes of Negatively Curved Space Forms
295
6.6.3
Rank
1
Symmetric Spaces
.......................295
6.6.4
Higher Rank Symmetric Spaces
...................296
6.6.4.1
Superrigidity
...........................296
6.6.5
Homogeneous Spaces
............................296
Volumes and Inequalities on Volumes of Cycles
............299
7.1
Curvature Inequalities
..................................299
7.1.1
Bounds on Volume Elements and First Applications
. 299
7.1.1.1
The Canonical Measure
..................299
7.1.1.2
Volumes of Standard Spaces
..............303
7.1.1.3
The Isoperimetric Inequality for Spheres
... 304
7.1.1.4
Sectional Curvature Upper Bounds
........305
7.1.1.5
Ricci
Curvature Lower Bounds
............308
7.1.2
Isoperimetric Profile
............................315
7.1.2.1
Definition and Examples
.................315
7.1.2.2
The
Gromov-Bérard-Besson-Gallot
Bound
. 319
7.1.2.3
Nonpositive
Curvature
on Noncompact Manifolds
................322
7.2
Curvature Free Inequalities on Volumes of Cycles
..........325
7.2.1
Curves in Surfaces
..............................325
7.2.1.1
Loewner,
Pu
and Blatter-Bavard Theorems
325
7.2.1.2
Higher Genus Surfaces
...................329
7.2.1.3
The Sphere
.............................336
7.2.1.4
Homological Systoles
....................338
7.2.2
Inequalities for Curves
...........................340
7.2.2.1
The Problem, and Standard Manifolds
.....340
7.2.2.2
Filling Volume and Filling Radius
.........342
7.2.2.3
Gromov s Theorem and Sketch of the Proof
344
7.2.3
Higher Dimensional Systoles:
Systolic Freedom Almost Everywhere
..............348
7.2.4
Embolie
Inequalities
............................353
7.2.4.1
Introduction
............................353
7.2.4.2
The Unit Tangent Bundle
................357
7.2.4.3
The Core of the Proof
...................359
7.2.4.4
Crofce s Three Results
...................363
7.2.4.5
Infinite Injectivity Radius
................366
7.2.4.6
Using
Embolie
Inequalities
...............367
XVI Contents
8
Transition:
The Next Two Chapters
........................369
8.1
Spectral Geometry and Geodesic Dynamics
...............369
8.2
Why are Riemannian Manifolds So Important?
............372
8.3
Positive Versus Negative Curvature
......................372
9
Spectrum of the Laplacian
.................................373
9.1
History
...............................................374
9.2
Motivation
............................................375
9.3
Setting Up
............................................376
9.3.1
Xdefinition
.....................................376
9.3.2
The Hodge Star
................................378
9.3.3
Facts
..........................................380
9.3.4
Heat, Wave and
Schrödinger
Equations
............381
9.4
Minimax
..............................................383
9.4.1
The Principle
..............................___383
9.4.2
An Application
.................................385
9.5
Some Extreme Examples
................................387
9.5.1
Square Tori, Alias Several Variable Fourier Series
... 387
9.5.2
Other Flat Tori
.................................388
9.5.3
Spheres
........................................390
9.5.4
ЮГ
..........................................390
9.5.5
Other Space Forms
.............................391
9.6
Current Questions
.....................................392
9.6.1
Direct Questions About the Spectrum
.............392
9.6.2
Direct Problems About the Eigenfunctions
.........393
9.6.3
Inverse Problems on the Spectrum
................393
9.7
First Tools: The Heat Kernel and Heat Equation
...........393
9.7.1
The Main Result
...............................393
9.7.2
Great Hopes
...................................396
9.7.3
The Heat Kernel and
Ricci
Curvature
.............401
9.8
The Wave Equation: The Gaps
..........................402
9.9
The Wave Equation: Spectrum
&
Geodesic Flow
...........405
9.10
The First Eigenvalue
...................................408
9.10.1
λι
and
Ricci
Curvature
..........................408
9.10.2
Cheeger s Constant
.............................409
9.10.3
λι
and Volume; Surfaces and Multiplicity
..........410
9.10.4 Kahler
Manifolds
...............................411
9.11
Results on Eigenfunctions
...............................412
9.11.1
Distribution of the Eigenfunctions
................412
9.11.2
Volume of the Nodal Hypersurfaces
...............413
9.11.3
Distribution of the Nodal Hypersurfaces
...........414
9.12
Inverse Problems
......................................414
9.12.1
The Nature of the Image
........................414
9.12.2
Inverse Problems: Nonuniqueness
.................416
9.12.3
Inverse Problems: Finiteness, Compactness
.........418
Contents XVII
9.12.4
Uniqueness and Rigidity Results
..................419
9.12.4.1
Vignéras
Surfaces
.......................420
9.13
Special Cases
..........................................421
9.13.1
Riemann Surfaces
...............................421
9.13.2
Space Forms
...................................424
9.13.2.1
Scars
..................................426
9.14
The Spectrum of Exterior Differential Forms
..............426
10
Geodesic Dynamics
........................................431
10.1
Introduction
..........................................432
10.2
Some Well Understood Examples
........................436
10.2.1
Surfaces of Revolution
...........................436
10.2.1.1 Zoll
Surfaces
...........................436
10.2.1.2 Weinstein
Surfaces
......................440
10.2.2
Ellipsoids and Morse Theory
.....................440
10.2.3
Flat and Other Tori: Influence of the Fundamental
Group
.........................................442
10.2.3.1
Flat Tori
...............................442
10.2.3.2
Manifolds Which are not Simply Connected
443
10.2.3.3
Tori, not Flat
...........................445
10.2.4
Space Forms
...................................446
10.2.4.1
Space Form Surfaces
.....................446
10.2.4.2
Higher Dimensional Space Forms
..........448
10.3
Geodesies Joining Two Points
...........................449
10.3.1
Birkhoff s Proof for the Sphere
...................449
10.3.2
Morse Theory
..................................453
10.3.3
Discoveries of Morse and
Serre
...................454
10.3.4
Computing with Entropy
........................456
10.3.5
Rational Homology and Gromov s Work
...........458
10.4
Periodic Geodesies
.....................................461
10.4.1
The Difficulties
.................................461
10.4.2
General Results
................................463
10.4.2.1
Gramoli
and Meyer
......................463
10.4.2.2
Results for the Generic ( Bumpy ) Case
... 465
10.4.3
Surfaces
.......................................466
10.4.3.1
The Lusternik-Schnirelmann Theorem
.....466
10.4.3.2
The Bangert-Franks-Hingston Results
.....468
10.5
The Geodesic Flow
.....................................471
10.5.1
Review of Ergodic Theory of Dynamical Systems
... 471
10.5.1.1
Ergodicity and Mixing
...................471
10.5.1.2
Notions of Entropy
......................473
10.6
Negative Curvature
....................................478
10.6.1
Distribution of Geodesies
........................481
10.6.2
Distribution of Periodic Geodesies
................481
10.7
Nonpositive
Curvature
..................................482
XVIII
Contents
10.8
Entropies on
Various Space Forms
.......................483
10.8.1
Liouville Entropy
...............................485
10.9
From Osserman to Lohkamp
............................485
10.10
Manifolds All of Whose Geodesies are Closed
..............488
10.10.1
Definitions and Caution
.........................488
10.10.2
Bott
and Samelson Theorems
....................490
10.10.3
The Structure on a Given Sd and KPn
............492
10.11
Inverse Problems: Conjugacy of Geodesic Flows
............495
11
Best Metrics
...............................................499
11.1
Introduction and a Possible Approach
....................499
11.1.1
An Approach
...................................501
11.2
Purely Geometric Functionals
...........................503
11.2.1
Systolic Inequalities
.............................503
11.2.2
Counting Periodic Geodesies
.....................504
11.2.3
The
Embolie
Constant
..........................504
11.2.4
Diameter and Injectivity
.........................505
11.3
Least curved
..........................................506
11.3.1
Definitions
.....................................506
11.3.1.1
inf WRhd/a
.............................506
11.3.1.2
Minimal Volume
........................507
11.3.1.3
Minimal Diameter
.......................507
11.3.2
The Case of Surfaces
............................508
11.3.3
Generalities, Compactness, Finiteness
and Equivalence
................................509
11.3.4
Manifolds with
inf Vol
(resp. inf
ЦДЦ^/з,
inf diam)
= 0..................511
11.3.4.1
Circle Fibrations and Other Examples.....
511
11.3.4.2
Allof-Wallach s Type of Examples
.........513
11.3.4.3
Nilmanifolds and the Converse:
Almost Flat Manifolds
...................514
11.3.4.4
The Examples of Cheeger and Rong
.......514
11.3.5
Some Manifolds with
inf Vol >
0
and
inf
ЦиЦх/уа
> 0.............................515
11.3.5.1
Using Integral Formulas
..................515
11.3.5.2
The Simplicial Volume of Gromov
.........516
11.3.6
inf
||Ji||jT,d/a in Four Dimensions
...................518
11.3.7
Summing up Questions on
inf Vol, inf
ЦДЦ^/а
......519
11.4
Einstein Manifolds
.....................................520
11.4.1
Hilbert s Variational Principle and Great Hopes
___520
11.4.2
The Examples from the Geometric Hierarchy
.......524
11.4.2.1
Symmetric Spaces
.......................524
11.4.2.2
Homogeneous Spaces and Others
..........524
11.4.3
Examples from Analysis: Evolution by
Ricci
Flow
... 525
Contents XIX
11.4.4
Examples from Analysis:
Kahler
Manifolds
.........526
11.4.5
The Sporadic Examples
.........................528
11.4.6
Around Existence and Uniqueness
................529
11.4.6.1
Existence
..............................529
11.4.6.2
Uniqueness
.............................530
11.4.6.3
Moduli
................................531
11.4.6.4
The Set of Constants,
Ricci
Flat Metrics
... 532
11.4.7
The Yamabe Problem
...........................533
11.5
The Bewildering Fractal Landscape of
ПЅ
(M)
According to Nabutovsky
...............................534
12
From Curvature to Topology
...............................543
12.1
Some History, and Structure of the Chapter
...............543
12.1.1 Hopfs
Inspiration
..............................543
12.1.2
Hierarchy of Curvatures
.........................546
12.1.2.1
Control via Curvature
...................546
12.1.2.2
Other Curvatures
.......................547
12.1.2.3
The Problem of Rough Classification
......548
12.1.2.4
References on the Topic, and the
Significance of Noncompact Manifolds
.....549
12.2
Pinching Problems
.....................................549
12.2.1
Introduction
...................................549
12.2.2
Positive Pinching
...............................552
12.2.2.1
The Sphere Theorem
....................552
12.2.2.2
Sphere Theorems Invoking Bounds
on Other Invariants
.....................557
12.2.2.3
Homeomorphic Pinching
.................558
12.2.2.4
The Sphere Theorem with Lower Bound
on Diameter, and no Upper Bound
on Curvature
...........................562
12.2.2.5
Topology at the Diameter Pinching Limit
.. 565
12.2.2.6
Pointwise Pinching
......................567
12.2.2.7
Cutting Down the Hypotheses
............567
12.2.3
Pinching Near Zero
.............................568
12.2.4
Negative Pinching
..............................569
12.2.5
Ricci
Curvature Pinching
........................571
12.3
Curvature of Fixed Sign
................................576
12.3.1
The Positive Side: Sectional Curvature
............576
12.3.1.1
The Known Examples
...................576
12-3.1.2
Homology Type
and the Fundamental Group
..............580
12-3.1.3
The Noncompact Case
...................583
12.3.1.4
Positivity
of the Curvature Operator
......588
12.3.1.5
Possible Approaches, Looking to the Future
590
XX
Contents
12.3.2 Ricci
Curvature:
Positive, Negative
and Just Below
. 593
12.3.3 The Positive
Side: Scalar Curvature
...............599
12.3.3.1
The Hypersurfaces of
Schoen
&
Yau
.......600
12.3.3.2
Geometrical Descriptions
.................601
12.3.3.3
Gromov s Quantization of
.řf-theory
and Topological Implications
of Positive Scalar Curvature
..............602
12.3.3.4
Trichotomy
.............................603
12.3.3.5
The Proof
..............................603
12.3.3.6
The Gromov-Lawson Torus Theorem
......604
12.3.4
The Negative Side: Sectional Curvature
............605
12.3.4.1
Introduction
............................605
12.3.4.2
Literature
..............................605
12.3.4.3
Quasi-isometries
........................606
12.3.4.4
Volume and Fundamental Group
..........609
12.3.4.5
Negative Versus
Nonpositive
Curvature
.... 612
12.3.5
The Negative Side:
Ricci
Curvature
...............613
12.4
Finiteness and Collapsing
...............................614
12.4.1
Finiteness
......................................614
12.4.1.1
Cheeger s Finiteness Theorems
............614
12.4.1.2
More Finiteness Theorems
...............618
12.4.1.3
Ricci
Curvature
.........................622
12.4.2
Compactness and Convergence
...................624
12.4.2.1
Motivation
.............................624
12.4.2.2
History
................................624
12.4.2.3
Contemporary Definitions and Results
.....625
12.4.3
Collapsing and the Space of Riemannian Metrics.
... 630
12.4.3.1
Collapsing
..............................630
12.4.3.2
Closures on a Compact Manifold
..........634
13
Holonomy Groups and
Kahler
Manifolds
...................637
13.1
Definitions and Philosophy
..............................637
13.2
Examples
.............................................639
13.3
General Structure Theorems
............................641
13.4
Classification
..........................................643
13.5
The Rare Cases
........................................646
13.5.1
G2 and Spin(7)
.................................646
13.5.2
Quaternionic
Kahler
Manifolds
...................647
13.5.2.1
The
Bérard
Bergery/Salamon Twistor
Space of Quaternionic
Kahler
Manifolds
.... 649
13.5.2.2
The Konishi Twistor Space
of a Quaternionic
Kahler
Manifold
........651
13.5.2.3
Other Twistor Spaces
....................651
13.5.3
Ricci
Flat
Kahler
and
Hyper-Kähler
Manifolds
.....652
13.5.3.1 Hyperkähler
Manifolds
...................652
Contents XXI
13.6 Kahler
Manifolds
......................................654
13.6.1
Symplectic Structures on
Kahler
Manifolds
.........655
13.6.2
Imitating Complex Algebraic Geometry
on
Kahler
Manifolds
............................655
14
Some Other Important Topics
..............................659
14.1
Noncompact Manifolds
.................................660
14.1.1
Noncompact Manifolds
of
Nonnegative Ricci
Curvature
...................660
14.1.2
Finite Volume
..................................661
14.1.3
Bounded Geometry
.............................661
14.1.4
Harmonic Functions
.............................662
14.1.5
Structure at Infinity
.............................662
14.1.6
Chopping
......................................662
14.1.7
Positive Mass
..................................662
14.1.8
Cohomology and Homology Theories
..............663
14.2
Bundles over Riemannian Manifolds
......................663
14.2.1
Differential Forms and Related Bundles
............663
14.2.1.1
The Hodge Star
.........................664
14.2.1.2
A Variational Problem for Differential
Forms and the Laplace Operator
..........664
14.2.1.3
Calibration
.............................666
14.2.1.4
Harmonic Analysis of Other Tensors
.......667
14.2.2
Spinors
........................................668
14.2.2.1
Algebra of Spinors
......................668
14.2.2.2
Spinors on Riemannian Manifolds
.........669
14.2.2.3
History of Spinors
.......................669
14.2.2.4
Applying Spinors
........................670
14.2.2.5
Warning: Beware of Harmonic Spinors
.....670
14.2.2.6
The Half Pontryagin Class
...............670
14.2.2.7
Reconstructing the Metric
from the Dirac Operator
.................671
14.2.2.8
Spin0 Structures
........................671
14.2.3
Various Other Bundles
..........................671
14.2.3.1
Secondary Characteristic Classes
..........672
14.2.3.2
Yang-Mills Theory
......................672
14.2.3.3
Twistor Theory
.........................672
14.2.3.4
tf-theory
...............................673
14.2.3.5
The Atiyah-Singer Index Theorem
........674
14.2.3.6
Supersymmetry and Supergeometry
.......674
14.3
Harmonic Maps Between Riemannian Manifolds
...........674
14.4
Low Dimensional Riemannian Geometry
..................676
14.5
Some Generalizations of Riemannian Geometry
............676
14.5.1
Boundaries
.....................................676
14.5.2
Orbifolds
......................................677
XXII Contents
14.5.3
Conical Singularities
............................678
14.5.4
Spectra of Singular Spaces
.......................678
14.5.5
Alexandrov Spaces
..............................678
14.5.6
CAT Spaces
....................................680
14.5.6.1
The
CAT(fe)
Condition
..................680
14.5.7
Camot-Carathéodory
Spaces
.....................681
14.5.7.1
Example: the
Heisenberg
Group
...........681
14.5.8
Finsler Geometry
...............................682
14.5.9
Riemannian Foliations
...........................683
14.5.10
Pseudo-Riemannian Manifolds
....................683
14.5.11
Infinite Dimensional Riemannian Geometry
........684
14.5.12
Noncommutative
Geometry
......................685
14.6
Gromov s mm Spaces
..................................685
14.7
Submanifolds
..........................................690
14.7.1
Higher Dimensions
..............................690
14.7.2
Geometric Measure Theory
and Pseudoholomorphic Curves
...................691
15
The Technical Chapter
.....................................693
15.1
Vector Fields and Tensors
...............................693
15.2
Tensors Dual via the Metric: Index Aerobics
..............696
15.3
The Connection, Covariant Derivative and Curvature
.......697
15.4
Parallel Transport
.....................................701
15.4.1
Curvature from Parallel Transport
................703
15.5
Absolute
(Ricci)
Calculus and Commutation Formulas:
Index Gymnastics
......................................704
15.6
Hodge and the Laplacian, Bochner s Technique
............706
15.6.1
Bochner s Technique
for Higher Degree Differential Forms
..............708
15.7
Gaufr-Bonnet-Chern
...................................709
15.7.1
Chern s Proof of Gaufr-Bonnet for Surfaces
........710
15.7.2
The Proof of Allendoerfer and Weil
...............711
15.7.3
Chern s Proof in all Even Dimensions
.............713
15.7.4
Chern Classes of Vector Bundles
..................714
15.7.5
Pontryagin Classes
..............................715
15.7.6
The
Euler
Class
................................715
15.7.7
The Absence of Other Characteristic Classes
.......716
15.7.8
Applying Characteristic Classes
..................716
15.7.9
Characteristic Numbers
..........................716
15.8
Examples of Curvature Calculations
......................718
15.8.1
Homogeneous Spaces
............................718
15.8.2
Riemannian Submersions
........................719
Contents XXIII
References
.....................................................723
Acknowledgements
............................................789
List of Notation
...............................................791
List of Authors
................................................797
Subject Index
.................................................811
|
any_adam_object | 1 |
author | Berger, Marcel 1927-2016 |
author_GND | (DE-588)12047672X |
author_facet | Berger, Marcel 1927-2016 |
author_role | aut |
author_sort | Berger, Marcel 1927-2016 |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV013430048 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
classification_tum | MAT 537f |
ctrlnum | (OCoLC)249122081 (DE-599)BVBBV013430048 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01627nam a2200433 c 4500</leader><controlfield tag="001">BV013430048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230201 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001113s2003 ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968623468</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540653171</subfield><subfield code="9">3-540-65317-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642621215</subfield><subfield code="9">9783642621215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249122081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013430048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53Bxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berger, Marcel</subfield><subfield code="d">1927-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12047672X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A panoramic view of Riemannian geometry</subfield><subfield code="c">Marcel Berger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 824 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannsche Geometrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009165941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009165941</subfield></datafield></record></collection> |
id | DE-604.BV013430048 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:45:46Z |
institution | BVB |
isbn | 3540653171 9783642621215 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009165941 |
oclc_num | 249122081 |
open_access_boolean | |
owner | DE-824 DE-384 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-703 DE-M347 DE-19 DE-BY-UBM DE-29T DE-634 DE-83 DE-11 DE-188 DE-706 |
owner_facet | DE-824 DE-384 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-703 DE-M347 DE-19 DE-BY-UBM DE-29T DE-634 DE-83 DE-11 DE-188 DE-706 |
physical | XXIII, 824 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
spelling | Berger, Marcel 1927-2016 Verfasser (DE-588)12047672X aut A panoramic view of Riemannian geometry Marcel Berger Berlin [u.a.] Springer 2003 XXIII, 824 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Riemannsche Geometrie Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009165941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berger, Marcel 1927-2016 A panoramic view of Riemannian geometry Riemannsche Geometrie Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 |
title | A panoramic view of Riemannian geometry |
title_auth | A panoramic view of Riemannian geometry |
title_exact_search | A panoramic view of Riemannian geometry |
title_full | A panoramic view of Riemannian geometry Marcel Berger |
title_fullStr | A panoramic view of Riemannian geometry Marcel Berger |
title_full_unstemmed | A panoramic view of Riemannian geometry Marcel Berger |
title_short | A panoramic view of Riemannian geometry |
title_sort | a panoramic view of riemannian geometry |
topic | Riemannsche Geometrie Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Riemannsche Geometrie Geometry, Riemannian |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009165941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bergermarcel apanoramicviewofriemanniangeometry |