The Fourier analytic proof of quadratic reciprocity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
2000
|
Schriftenreihe: | Pure and applied mathematics
A Wiley interscience publication |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 115 S. |
ISBN: | 0471358304 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013405198 | ||
003 | DE-604 | ||
005 | 20030319 | ||
007 | t | ||
008 | 001026s2000 |||| 00||| eng d | ||
020 | |a 0471358304 |9 0-471-35830-4 | ||
035 | |a (OCoLC)247822598 | ||
035 | |a (DE-599)BVBBV013405198 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512.74 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Berg, Michael C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Fourier analytic proof of quadratic reciprocity |c Michael C. Berg |
264 | 1 | |a New York [u.a.] |b Wiley |c 2000 | |
300 | |a XX, 115 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics | |
490 | 0 | |a A Wiley interscience publication | |
650 | 0 | 7 | |a Quadratisches Reziprozitätsgesetz |0 (DE-588)4176566-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quadratisches Reziprozitätsgesetz |0 (DE-588)4176566-7 |D s |
689 | 0 | 1 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 0 | 2 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009146620&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009146620 |
Datensatz im Suchindex
_version_ | 1804128190001577984 |
---|---|
adam_text | Contents
PREFACE vii
ACKNOWLEDGMENTS xi
INTRODUCTION xiii
1. Hecke s Proof of Quadratic Reciprocity 1
1.1 Hecke ^ functions and Their Functional Equation
/ 3
1.2 Gauss ( Hecke) Sums / 5
1.3 Relative Quadratic Reciprocity / 11
1.4 Endnotes to Chapter 1/14
2. Two Equivalent Forms of Quadratic Reciprocity 16
3. The Stone Von Neumann Theorem 20
3.1 The Finite Case: A Paradigm / 21
3.2 The Locally Compact Abelian Case: Some Remarks
/ 24
3.3 The Form of the Stone Von Neumann Theorem Used
in § 4.1 / 25
v
VI CONTENTS
4. Weil s Acta Paper 26
4.1 Heisenberg Groups / 28
4.2 A Heisenberg Group and A Group of Unitary
Operators / 32
4.3 The Kernel of tt / 35
4.4 Second Degree Characters / 44
4.5 The Splitting of 77 on a Distinguished Subgroup of
B(G) / 52
4.6 Vector Spaces Over Local Fields / 57
4.7 Quaternions Over a Local Field / 63
4.8 Hilbert Reciprocity / 70
4.9 The Stone Von Neumann Theorem Revisited / 73
4.10 The Double Cover of the Symplectic Group / 77
4.11 Endnotes to Chapter 4/79
5. Kubota and Cohomology 82
5.1 Weil Revisited / 84
5.2 Kubota s Cocycle / 86
5.3 The Splitting of aA Over SL(2, k) / 92
5.4 2 Hilbert Reciprocity Once Again / 96
6. The Algebraic Agreement Between the Formalisms of Weil
and Kubota 98
6.1 The Gruesome Diagram / 99
6.2 The Even More Gruesome Diagram / 102
7. Hecke s Challenge: General Reciprocity and Fourier
Analysis on the March 103
BIBLIOGRAPHY 109
INDEX 113
|
any_adam_object | 1 |
author | Berg, Michael C. |
author_facet | Berg, Michael C. |
author_role | aut |
author_sort | Berg, Michael C. |
author_variant | m c b mc mcb |
building | Verbundindex |
bvnumber | BV013405198 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)247822598 (DE-599)BVBBV013405198 |
dewey-full | 512.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.74 |
dewey-search | 512.74 |
dewey-sort | 3512.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01589nam a2200421 c 4500</leader><controlfield tag="001">BV013405198</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030319 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001026s2000 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471358304</subfield><subfield code="9">0-471-35830-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247822598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013405198</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.74</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berg, Michael C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Fourier analytic proof of quadratic reciprocity</subfield><subfield code="c">Michael C. Berg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 115 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley interscience publication</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratisches Reziprozitätsgesetz</subfield><subfield code="0">(DE-588)4176566-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quadratisches Reziprozitätsgesetz</subfield><subfield code="0">(DE-588)4176566-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009146620&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009146620</subfield></datafield></record></collection> |
id | DE-604.BV013405198 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:45:18Z |
institution | BVB |
isbn | 0471358304 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009146620 |
oclc_num | 247822598 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XX, 115 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Wiley |
record_format | marc |
series2 | Pure and applied mathematics A Wiley interscience publication |
spelling | Berg, Michael C. Verfasser aut The Fourier analytic proof of quadratic reciprocity Michael C. Berg New York [u.a.] Wiley 2000 XX, 115 S. txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics A Wiley interscience publication Quadratisches Reziprozitätsgesetz (DE-588)4176566-7 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Quadratisches Reziprozitätsgesetz (DE-588)4176566-7 s Beweis (DE-588)4132532-1 s Harmonische Analyse (DE-588)4023453-8 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009146620&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berg, Michael C. The Fourier analytic proof of quadratic reciprocity Quadratisches Reziprozitätsgesetz (DE-588)4176566-7 gnd Beweis (DE-588)4132532-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4176566-7 (DE-588)4132532-1 (DE-588)4023453-8 |
title | The Fourier analytic proof of quadratic reciprocity |
title_auth | The Fourier analytic proof of quadratic reciprocity |
title_exact_search | The Fourier analytic proof of quadratic reciprocity |
title_full | The Fourier analytic proof of quadratic reciprocity Michael C. Berg |
title_fullStr | The Fourier analytic proof of quadratic reciprocity Michael C. Berg |
title_full_unstemmed | The Fourier analytic proof of quadratic reciprocity Michael C. Berg |
title_short | The Fourier analytic proof of quadratic reciprocity |
title_sort | the fourier analytic proof of quadratic reciprocity |
topic | Quadratisches Reziprozitätsgesetz (DE-588)4176566-7 gnd Beweis (DE-588)4132532-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Quadratisches Reziprozitätsgesetz Beweis Harmonische Analyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009146620&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bergmichaelc thefourieranalyticproofofquadraticreciprocity |