Peroxide chemistry: mechanistic and preparative aspects of oxygen transfer ; research report
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
Wiley-VCH
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 664 S. graph. Darst. |
ISBN: | 3527271503 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013380610 | ||
003 | DE-604 | ||
005 | 20111215 | ||
007 | t | ||
008 | 001002s2000 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 959812237 |2 DE-101 | |
020 | |a 3527271503 |9 3-527-27150-3 | ||
035 | |a (OCoLC)47868829 | ||
035 | |a (DE-599)BVBBV013380610 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-739 |a DE-473 |a DE-355 |a DE-19 |a DE-20 |a DE-29T |a DE-384 |a DE-12 |a DE-91G |a DE-706 |a DE-526 |a DE-634 |a DE-188 | ||
050 | 0 | |a QD305.E7 | |
082 | 0 | |a 547/.23 |2 21 | |
084 | |a VK 7000 |0 (DE-625)147414:253 |2 rvk | ||
084 | |a CHE 646f |2 stub | ||
084 | |a CHE 621f |2 stub | ||
245 | 1 | 0 | |a Peroxide chemistry |b mechanistic and preparative aspects of oxygen transfer ; research report |c Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam |
264 | 1 | |a Weinheim [u.a.] |b Wiley-VCH |c 2000 | |
300 | |a XXVII, 664 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Oxydation |2 ram | |
650 | 7 | |a Peroxydes |2 ram | |
650 | 4 | |a Oxidation | |
650 | 4 | |a Peroxides | |
650 | 0 | 7 | |a Oxidation |0 (DE-588)4137187-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Organische Peroxide |0 (DE-588)4172773-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Peroxide |0 (DE-588)4611379-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Peroxide |0 (DE-588)4611379-4 |D s |
689 | 0 | 1 | |a Oxidation |0 (DE-588)4137187-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Organische Peroxide |0 (DE-588)4172773-3 |D s |
689 | 1 | 1 | |a Oxidation |0 (DE-588)4137187-2 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Adam, Waldemar |4 edt | |
710 | 2 | |a Deutsche Forschungsgemeinschaft |e Sonstige |0 (DE-588)2007744-0 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009127237 |
Datensatz im Suchindex
_version_ | 1804128160352043008 |
---|---|
adam_text | Preface xx
A Historical Mementos 1
1 Landmarks in the Development of Organic Peroxide
Chemistry 3
Manfred Schulz
1.1 Introduction 4
1.2 The Historical Beginning of Oxidation Chemistry 5
1.3 The First Investigations Regarding the Course
of Autoxidation of Organic Compounds 5
1.4 The Beginning of Modern Peroxide Chemistry 9
1.5 The Expansion of Classical Peroxide Chemistry 11
1.5.1 Autoxidation of Alkenes 11
1.5.1.1 The Four Membered Ring Peroxide Structure versus
the Hydroperoxide Structure 11
1.5.1.2 Photooxygenation Reactions with Singlet Oxygen
Endoperoxides 14
1.5.1.3 Polymeric Peroxides 18
1.5.1.4 Ozonization and Ozonides 19
1.6 Current Peroxide Chemistry 23
1.6.1 1,2 Dioxetanes 23
1.6.2 1,2 Dioxetanones (a Peroxylactones) 25
1.6.3 Dioxiranes ( The Wonder Oxidants ) 25
1.7 Hydrogen Peroxide 28
1.8 Peroxides in Biology 30
1.9 Recent Applications of Peroxide Chemistry 31
1.10 References and Remarks 33
Contents
B Oxidation with Organic Peroxides 39
1 Recent Advances in Homogeneous Catalyzed Epoxidations
Using Hydrogen Peroxide or tert. Butyl Hydroperoxide ... 41
Thomas Kratz and Werner ZeiB
1.1 Introduction and Background 41
1.2 Epoxidations with H2O2 43
1.2.1 Group VI B Catalysts (Cr, Mo, W) 43
1.2.2 Group VII B Catalysts (Mn, Tc, Re) 48
1.3 Epoxidations with TBHP 52
1.4 References 57
2 Photoinduced Electron Transfer Reactions of Alkenes and
Azide Anions in the Presence of Molecular Oxygen:
Formation of 1,2 Azidohydroperoxides and Use as
Oxygen Transfer Reagents 60
Axel G. Griesbeck, Jb rg Steinwascher and
Thomas Hundertmark
2.1 Historical Background and Query 61
2.2 Results and Discussion 62
2.2.1 The First Electron Transfer 62
2.2.2 Addition of Azidyl Radicals to Alkenes:
Chemoselectivity 65
2.2.3 Addition of Azidyl Radicals to Alkenes:
Regioselectivity 66
2.2.4 Addition of Azidyl Radicals to Alkenes:
Simple Diastereoselectivity 67
2.2.5 Addition of Azidyl Radicals to Alkenes:
Induced Diastereoselectivity 69
2.2.6 Addition of Molecular Oxygen to Carbon Centered Radicals 70
2.2.7 Second Electron Transfer 71
2.2.8 The Competing Reduction Step ROOH ROH 71
2.2.9 Variation of Substrates and Sensitizers 72
2.3 Azidohydroperoxides as Oxygen Transfer Reagents .... 73
2.4 Conclusions 75
2.5 References 76
Contents
3 Preparative Use of Peroxidic Oxidants for Oxygen Transfer
Reactions
Waldemar Adam, Hans Georg Degen, Aurelia Pastor, Chantu
R. Saha Moller, Simon B. Schambony and Cong Gui Zhao
3.1 Background and Objectives 79
3.2 Oxygen Transfer Reactions with Singlet Oxygen 80
3.2.1 Regio and Diastereoselective Schenck Ene Reactions ... 80
3.2.1.1 Regioselectivity 81
3.2.1.2 Diastereoselectivity 82
3.2.2 Diastereoselective [4+2] and [2+2] Cycloadditions of
Singlet Oxygen 87
3.2.2.1 [4+2] Cycloaddition 87
3.2.2.2 [2+2] Cycloaddition 91
3.3 Oxygen Transfer Reactions with Dioxiranes 92
3.3.1 Oxidation of n Bonds 92
3.3.1.1 Epoxidations 92
3.3.1.2 Arene Oxidation 97
3.3.1.3 Nitronate Anion Oxidation 99
3.3.2 Oxidation of S and N Heteroatoms 99
3.3.3 Oxidation of a Bonds 102
3.3.3.1 C H Oxidation 103
3.3.3.2 Si H Oxidation 103
3.3.4 Asymmetric Oxidations with Dioxiranes 103
3.4 Oxygen Transfer Reactions with Perhydrates 108
3.5 References 110
4 Organosulfonic and Sulfonimidic Peracids
New Oxidants for Diastereoselective and Enantioselective
Oxidations of Organic Substrates 113
Manfred Schulz and Ralph Kluge
4.1 Introduction 113
4.2 Results and Discussion 114
4.2.1 Organosulfonic Peracids 114
4.2.2 Sulfonimidic Peracids 119
4.3 Summary 125
4.4 References 126
5 Reactive Peroxo Compounds Generated in Situ from
Hydrogen Peroxide: Kinetics and Catalytic Application
in Oxidation Processes 128
Horst Elias and Stephane Vayssie
5.1 Background and Intention of the Project 129
5.2 Selection of the Systems Studied 130
Contents
5.3 Kinetics of the Acid Catalyzed Reaction of Cyclohexene
with Hydogen Peroxide: Mechanistic Aspects of the
in situ Activation of H2O2 [6] 131
5.4 Fast Oxidation of Organic Sulfides by Hydrogen Peroxide by
in situ Generated Peroxynitrous Acid [7] 132
5.5 Fast Oxygen Atom Transfer from in situ Generated
Peroxynitrous Acid to Thiolato Sulfur Coordinated to
Cobalt(III) [8] 135
5.6 Concluding Remarks 136
5.7 References 138
6 Carbonyl O Oxides and Dioxiranes
From Laboratory Curiosities to Useful Reagents 139
K. Block, W. Kappert, A. Kirschfeld, S. Muthusamy,
K. Schroeder, W. Sander, E. Kraka, C. Sosa and D. Cremer
6.1 Introduction 139
6.2 Dimesitylketone O oxide 142
6.2.1 Synthesis 142
6.2.2 Spectroscopic Characterization 143
6.2.3 Thermal Decay 145
6.3 Dimesityldioxirane 147
6.3.1 Synthesis and Structural Characterization 147
6.3.2 Reactivity 148
6.4 Other Stable Carbonyl Oxides and Dioxiranes 151
6.5 Conclusion 153
6.6 References 154
7 Formation of Dioxiranes and Singlet Molecular Oxygen by
the Ketone Catalyzed Decomposition of Peroxycarboxylic
Acids 157
Andreas Lange and Hans Dieter Brauer
7.1 Introduction 158
7.2 Experimental 159
7.2.1 Materials . . . . 159
7.2.2 Singlet oxygen infrared emission measurements 160
7.2.3 Mechanism, Rate Law and Expression for IP of the
Ketone catalyzed Decomposition 161
7.3 Results and Discussion 163
7.3.1 *O2 Phosphorescence Intensity IP as a Function of Time . . 163
7.3.2 lO2 Phosphorescence Intensity IP as a Function of [PCA]T(0),
[Ketone]T and the pH dependent Factor F 164
7.3.3 Yield of ^2 Formation (Y1O2) 166
7.3.4 Third order Rate Constants for the Formation of Dioxiranes . 168 ,
7.3.4.1 Ketone catalyzed Decomposition of MPP 168
i
Contents
7.3.4.2 Ketone catalyzed Decomposition of MPM, MCPBA and PAA 169
7.3.5 1O2 Phosphorescence Emission of the Ketone catalyzed
Decomposition of Monoperoxyphthalic Acid (MPP) at
Different Temperatures 173
7.4 Conclusions 175
7.5 References 175
C Enzymatic and Biomimetic Oxidations 177
1 Age and Age Dependent Diseases, a Consequence of Lipid
Peroxidation 179
Gerhard Spiteller, Dieter Spiteller, Wolfgang Jira, Uwe
KieBling, Angela Dudda, Michael Weisser, Stefan Hecht and
Caroline Schwarz
1.1 Introduction 180
1.2 Proof for the Implication of Linoleic Acid in LPO Processes
Occurring in Mammalians 186
1.3 Implication of LPO Processes in Atherosclerosis and Aging . 189
1.4 Connections between Aging and Atherosclerosis 193
1.4.1 Physiological Properties of HODEs 193
1.4.2 Metabolism of HODEs 194
1.4.3 Induction of Nonenzymatic LPO Processes 196
1.4.4 Trapping of Intermediates of LPO Processes 197
1.4.5 Connection of LPO Processes with Food Intake 199
1.5 Peroxyl Radicals as Biological Epoxidation Reagent .... 200
1.5.1 Lipid Peroxidation in Cancer 204
1.6 Conclusions 205
1.7 References 206
2 New Peroxycarboxylic Acids by Lipase Catalysis:
Preparation and Oxidation Properties 209
Siegfried Warwel and Mark Riisch gen. Klaas
2.1 Introduction 210
2.2 Generation of Peroxy Acids by Lipase Catalyzed Conversion
of Carboxylic Acids with Hydrogen Peroxide 211
2.3 Generation of Peroxy Acids by Lipase Catalyzed Conversion
of Carboxylic Esters with Hydrogen Peroxide (Perhydrolysis) 212
2.3.1 Scope of the Reaction 212
2.3.2 Generation of Optically Active Peroxy Acids by Lipase
Catalyzed Perhydrolysis 213
2.3.3 Other Unusual Peroxy Acids 217
Contents
2.3.4 Generation of Peroxyacetic Acid by Lipase Catalyzed
Perhydrolysis of Ethyl Acetate A General Procedure
for Olefin Epoxidation [14] 218
2.3.5 Generation of Peroxycarbonic Acid Derivatives by
Perhydrolysis of Dialkyl Carbonates An Acid Free
Oxidant [17, 18] 219
2.4 Chemo Enzymatic Epoxidation of Unsaturated Fatty Acids
and Esters [25] 221
2.5 Chemo Enzymatic Epoxidation of Unsaturated Fatty Alcohols 223
2.6 Chemo Enzymatic Epoxidation of Unsaturated Trimethylsilyl
Ethers [30] 224
2.7 Chemo Enzymatic Oxidation of Aldehydes 227
2.8 Chemo Enzymatic Baeyer Villiger Oxidation 228
2.9 References 230
3 Transition Metal Catalyzed Oxyfunctionalization of Catechol
and Flavonol Derivatives 232
Florian Schweppe, Holger Sirges, Matthias Pascaly,
Mark Duda, Cetin Nazikkol, Werner Steinforth, Bernt Krebs
3.1 Oxygenases 233
3.2 Catechol 1,2 Dioxygenase 233
3.2.1 Introduction 233
3.2.2 Iron(III) Complexes as Structural and Functional Models
for Catechol 1,2 Dioxygenases 234
3.2.2.1 Mononuclear Iron(III) Precursor Complexes 234
3.2.2.2 Mononuclear Iron(III) Tetrachlorocatecholate Complexes
as Biomimetic Models for Enzyme Substrate Adducts . . . 236
3.2.2.3 Reactivity Studies of Iron(III) Catecholate Complexes ... 237
3.3 Quercetin 2,3 Dioxygenase 240
3.3.1 Introduction 240
3.3.2 Results 242
3.3.2.1 Kinetic Studies 242
3.3.2.2 Copper Complexes as Structural Models for the Active Site
of Quercetinase 244
3.3.2.3 Spectroscopic Studies 246
3.4 References 248
4 Binding and Activation of Dioxygen by Biomimetic
Metal Complexes 249
Ernst G. Jager, Jutta Knaudt, Kerstin Schuhmann and
Anka Guba
4.1 Introduction 250
4.2 Complexes of New Chiral Iigands 251
4.3 Binding of Dioxygen by Metal(II) Complexes 252
Contents
4.3.1 Gas Volumetric Investigation of Dioxygen Uptake 252
4.3.2 Redox Potentials, Lewis Acidity, and Spin Ground State . . 256
4.3.3 Cobalt Complexes: Coupled Equilibria of Oxygenation. . . 261
4.3.4 Complexes of Iron and Manganese: Irreversible Oxygenation 265
4.4 Catalytic Activation of Dioxygen 266
4.4.1 General Remarks: Oxidation of Hydroquinone 266
4.4.2 The Role of Special Structural Features:
Active and Inactive FeTAA Complexes 269
4.5 New [N3,O] , and [N3,O2] Coordinated Cobalt(II) Complexes 274
4.5.1 Syntheses and Structures 274
4.5.2 Reaction with Dioxygen 276
4.6 References 278
5 Transition Metal Catalyzed Stereoselective Synthesis of
Functionalized Tetrahydrofurans 281
Simone Drees, Marco Greb, Jens Hartung and
Philipp Schmidt
5.1 Introduction 282
5.2 Bromination Reactions Using Ammonium Metavanadate as
Haloperoxidase Mimic 283
5.3 Vanadium Chelates as Oxidation Catalysts for the Stereo
selective Synthesis of Functionalized
Tetrahydrofurans 288
5.4 Models for Prediction of the Stereochemical Pathway for
Vanadium(V) Catalyzed Formation of Functionalized
Tetrahydrofurans from Alkenols 295
5.5 The Use of Complexes with Compartimental Ligands
as Catalyst in the Stereoselective Synthesis of
Tetrahydrofurans 296
5.6 References 299
D Metal Catalyzed Selective Oxidations 301
1 Metallosalen Catalyzed Asymmetric Oxygen Transfer
Reaction: Dynamics of Salen Ligand Conformation .... 303
Tsutomu Katsuki
1.1 Introduction 304
1.2 Previous Studies on Mn salen Catalyzed Oxidation .... 305
1.3 Control of the Ligand Conformation of Oxo Mn Salen
Complexes 311
1.4 Conformation of Second Generation Mn salen Complex . . 313
1.5 Conclusions 317
1.6 References 318
Con ten ts 2 Transition Metal Catalyzed Epoxidation of Unfunctionalized
Alkenes 320
Andreas Scheurer, Paul Mosset, Martina Spiegel and
Rolf W. Saalfrank
2.1 Aerobic Epoxidation of Olefins with Mononuclear Iron
Cluster [FeU] as Catalyst 320
2.2 Epoxidation of Olefins with Molecular Oxygen or Hydrogen
Peroxide and Trinuclear Iron Cluster [Fe3OL3] as Catalyst. . 322
2.3 Tetranuclear [NH4Fe4L|] and Hexanuclear [Fe6l4] Iron
Clusters: Catalysts for the Epoxidation of Olefins with
Molecular Oxygen or Hydrogen Peroxide 326
2.4 Enantioselective Epoxidation of Unfunctionalized Alkenes
with Salen Mn(III) Complexes Based on Tartaric Acid . . . 329
2.4.1 Synthesis of (2R,3R) and (2S,3S) 2,3 diaminobutane
1,4 diol ethers 329
2.4.2 Synthesis of Salen (S,S) [MnL5]Cl Complexes 331
2.4.3 Enantioselective Epoxidation of Unfunctionalized Olefins
with Terminal Oxidants Catalyzed by a Salen Mn(III)
Complex 331
2.5 Catalytic Epoxidation of Olefins with Sodium Periodate
in the Presence of C2 Symmetric Co(II) Bioxazoline
Complexes 336
2.5.1 Synthesis of C2 Symmetric Bioxazolines Based on
Tartaric Acid 336
2.5.2 Epoxidation of Olefins with 02/lsobutyraldehyde Catalyzed
by Co(II) Complexes 336
2.6 References 338
3 Peroxo Complexes of Molybdenum, Tungsten and Rhenium
with Phase Transfer Active Ligands: Catalysts for the
Oxidation of Olefins and Aromatics by Hydrogen Peroxide
and Bistrimethylsilyl Peroxide 341
Carsten Jost, Giinter Wahl, Dirk Kleinhenz and
Jb rg Sundermeyer
3.1 Introduction 341
3.2 Results and Discussion 342
3.2.1 Activation of Hydrogen Peroxide 342
3.2.1.1 State of the Art 342
3.2.1.2 Surfactants as Ligands in a Biphasic Oxidation Catalysis . . 343
3.2.1.3 Catalytic Studies 343
3.2.1.4 Preparation of Catalysts and Their Model Complexes . . . 347
3.2.1.5 Mechanistic Studies on the Nature of the Active Species . . 349
3.2.1.6 The Best Ligands for Hydrogen Peroxide Activation . . . . 353
3.2.1.7 The Best Metal Complexes for Hydrogen Peroxide Activation 353 ;
Contents
3.2.1.8 Conclusions for Hydrogen Peroxide Activation 356
3.2.2 Activation of Bistrimethylsilyl Peroxide (BTSP) 356
3.2.2.1 State of the Art 356
3.2.2.2 Catalytic Epoxidations via Activation of BTSP by Phosphane
Oxide Complexes of Molybdenum, Tungsten and Rhenium . 357
3.2.2.3 Catalytic Oxidation of Aromatics via Activation of BTSP
by Phosphane Oxide Complexes of Molybdenum, Tungsten
and Rhenium 359
3.2.2.4 Mechanistic Aspects in the Activation of BTSP 360
3.2.2.5 Conclusions for Bistrimethylsilyl Peroxide Activation .... 361
3.3 References 361
4 Kinetic Resolution by Jacobsen Epoxidation as an Easy Route
to Podophyllotoxin Analoga 365
Torsten Linker, Ulrike Engelhardt and Arunkanti Sarkar
4.1 Introduction 366
4.2 Synthesis of the Starting Materials 367
4.3 Epoxidations 368
4.3.1 Diastereoselective Epoxidations 369
4.3.2 Enantioselective Epoxidations 370
4.3.3 Influence of Allylic Substituents on the Epoxidations.... 375
4.4 Conclusions 378
4.5 References 379
5 Preparation of Optically Active Hydroperoxides and their Use
for Stereoselective Oxygen Transfer 381
Hans Jurgen Hamann, Eugen Hoft and Jiirgen Liebscher
5.1 Introduction 381
5.2 Generation of Optically Active Hydroperoxides 382
5.2.1 Kinetic Resolutions 382
5.2.1.1 Kinetic Resolution via Sharpless Epoxidation 382
5.2.1.2 Kinetic Resolution by Decomposition of Hydroperoxides . . 385
5.2.1.3 Enzymatic Resolutions of Hydroperoxides 386
5.2.2 HPLC on Chiral Stationary Phases 392
5.2.3 Optically Active Hydroperoxides from the Chiral Pool . . 394
5.2.3.1 Pinane Hydroperoxides 394
5.2.3.2 Azido hydroperoxides 394
5.2.3.3 Hydroperoxides Derived from Sugars 395
5.3 Use of Optically Active Hydroperoxides for Stereoselective
Oxygen Transfer 398
5.3.1 Epoxidation 398
5.3.2 Oxidation of Sulfides 402
5.4 References 404
Contents
6 New Early Transition Metal Complexes as Homogeneous
Catalysts for Olefin Oxidation 406
Wolfgang A. Herrmann, Jorg Fridgen and Joachim J. Haider
6.1 Rhenium Compounds 407
6.1.1 Rhenium(V) Complexes with Schiff Base Ligands 407
6.1.1.1 Introduction 407
6.1.1.2 Results and Discussion 408
6.1.1.3 Conclusion 413
6.1.2 Intramolecular Lewis Base Adducts of Rhenium(VII) Oxides. 413
6.1.2.1 Introduction 413
6.1.2.2 Results and Discussion 414
6.1.2.3 Conclusion 417
6.2 Molybdenum and Tungsten Compounds 418
6.2.1 High Valent Molybdenum(VI) and Tungsten(VI) Complexes
with N Heterocyclic Carbene Ligands 418
6.2.1.1 Introduction 418
6.2.1.2 Results and Discussion 418
6.2.1.3 Conclusion 420
6.2.2 Molybdenum(VI) and Tungsten(VI) Complexes with Pyridinyl
Alcoholate Ligands 420
6.2.2.1 Introduction 420
6.2.2.2 Results and Discussion 420
6.2.2.3 Conclusion 428
6.3 References 428
7 Olefin Epoxidation Catalyzed by Molybdenum Peroxo
Complexes: A Mechanistic Study 433
Werner R. Thiel, Michael Barz, Holger Glas and
Anna Katharina Pleier
7.1 Introduction 434
7.2 Oxygen Transfer Mechanisms 434
7.3 Seven Coordinate Molybdenum Peroxo Complexes:
Synthesis and Catalytic Features 435
7.4 Catalyst and Substrate in One Molecule, a First Idea
on the Mechanism 437
7.5 Proton Transfer and Nucleophilic Attack:
A Concerted Reaction 439
7.5.1 The Reaction of Lewis and Bransted Acids
with Peroxo Complexes 439
7.5.2 Hydrogen Bonding to Peroxo Ligands Coordinated Mo(VI) . 441
7.6 A Structure/Activity Relationship for Epoxidation Catalysts . 443
7.7 From Ligand Fluxionality to the Activation
of the Hydroperoxide 445 ;
I
I
Contents
7.7.1 A NMR and DFT Investigation on the Ligand Dissociation
Processes 446
7.7.2 A DFT study on the Hydroperoxide Activation 450
7.8 Conclusion 451
7.9 References 452
8 Oxidation Reactions in Perfluorinated Solvents 454
Bodo Betzemeier and Paul Knochel
8.1 Introduction 454
8.2 Direct Oxidation with Molecular Oxygen in Perfluorinated
Solvents 456
8.2.1 Oxidation of Zinc Organometallics to Hydroperoxides . . . 456
8.2.2 Oxidation of Organoboranes to Alcohols 457
8.3 Metal Catalyzed Oxidation in a Fluorous Biphase System. . 458
8.3.1 Fluorinated f3 Diketonates 458
8.3.1.1 Nickel Catalyzed Oxidation of Aldehydes to Carboxylic Acids 459
8.3.1.2 Nickel Catalyzed Oxidation of Sulfides to Sulfoxides
and Sulfones 460
8.3.1.3 Ruthenium Catalyzed Epoxidation of Olefins 461
8.3.1.4 Palladium Catalyzed Oxidation of Terminal Olefins
to Methyl Ketones 461
8.3.2 Fluorinated Selenides 462
8.3.2.1 Epoxidation of Olefins 463
8.3.2.2 Oxidation of Alcohols to Aldehydes and Ketones 465
8.3.2.3 Baeyer Villiger Oxidation 465
8.4 Conclusion 466
8.5 References 467
9 Transition Metal Alkoxide Catalyzed Oxidation of Phenols,
Alcohols, and Amines with terr. Butyl hydroperoxide. . . . 469
Horst Adam, Karameli Khanbabaee, Karsten Krohn, Jochen
Kiipke, Hagen Rieger, Klaus Steingrover and Ingeborg Vinke
9.1 Introduction 469
9.2 Phenols to orfcho Quinones 471
9.3 Ortho Substituted Phenols to a Ketols 475
9.4 a Chloroketones from Silyl Enol Ethers and Selective
para Chlorination of Phenols 479
9.5 Deydrogenation of Alcohols 480
9.5.1 Benzylic Alcohols 480
9.5.2 Dehydrogenation of Non Activated Alcohols 483
9.6 Oxidation of Amines 486
9.6.1 Primary Aromatic Amines 486
9.6.2 Aliphatic Primary Amines 487
9.6.3 N Dealkylation of Secondary N Aryl N Alkyl Amines . . . 488
Contents
9.7 Cleavage of Nitronates, Oximes and Hydrazones 489
9.8 References 490
10 Enantioselective Baeyer Villiger Reactions and
Sulfide Oxidations 494
Carsten Bolm
10.1 Introduction 494
10.2 Metal catalyzed Asymmetric Baeyer Villiger Reactions . . . 495
10.3 Enantioselective Sulfide Oxidations 501
10.4 References 505
11 Chiral Pentacoordinated Manganese Complexes as
Biomimetic Catalysts for Asymmetric Epoxidations
with Hydrogen Peroxide 511
Albrecht Berkessel, Thomas Schwenkreis, Matthias Frauen
kron, Adrian Steinmetz, Norbert Schatz and Jochen Prox
11.1 Introduction 511
11.2 Results 513
11.2.1 Synthesis and Catalytic Performance of Pentacoordinated
Peroxidase Models 513
11.2.1.1 Synthesis of the Ligands and Manganese Complexes . . . 513
11.2.1.2 X Ray Crystal Structures 515
11.2.1.3 Asymmetric Epoxidation with Hydrogen Peroxide Catalyzed
by the EnantiomericaUy Pure Manganese Chelates 7a,c,h,i . 516
11.2.1.4 Asymmetric Epoxidation Catalyzed by the Manganese
Chelate 7 a Using Terminal Oxidants Other than Hydrogen
Peroxide 519
11.2.1.5 Further Variations on the Catalyst Structure: Epoxidation
of 1,2 Dihydronaphthalene 8 Catalyzed by the Manganese
Chelates rac 7b e and rac 7g 519
11.2.2 Manganese Chelates Derived from Amino Acids 521
11.3 Discussion 522
11.3.1 Pentadentate Manganese (III) Complexes of the Dihydrosalen
Type as Peroxidase Models and as New Epoxidation
Catalysts 522
11.3.2 On the Mechanism of Asymmetric Induction 523
11.3.3 Stability of the Catalysts 523
11.4 Conclusion 524
Acknowledgements 524
11.5 References 525
i
Contents
12 Photocatalytic Activation of Oxygen by Iron(III)porphyrins . 526
Horst Hennig and Doritt Luppa
12.1 Introduction 527
12.2 Influence of Porphyrin Substituents on the UV/VIS Spectro
scopic and Photochemical Behavior of Iron(III) Complexes . 528
12.3 The Activation of O2 by Means of Photochemically Generated
Iron(II)porphyrin Complexes 534
12.4 Photocatalytic Oxygenation of oc Pinene in the Presence
of Chloro iron(III)porphyrin Complexes 536
12.5 Conclusions 539
12.6 References 540
13 Oxidation and Oxygenation of Substituted Arenes with Alkyl
Hydroperoxides or Dioxygen/Mediation by Schiff Base
Complexes 542
Anton Rieker, Stefan Forster and Emerich Eichhorn
13.1 Introduction 543
13.2 Mechanistic Aspects 544
13.2.1 Reactions with Dioxygen 544
13.2.1.1 No Electron Transfer (NOET) Between Substrate and Metal. 545
13.2.1.2 Outer Sphere Electron Transfer (OSET) 546
13.2.1.3 Inner Sphere Electron Transfer (ISET) 547
13.2.2 Indirect Oxygenation (INDO) with t BuOOH as Oxidant . . 547
13.3 Oxygenation of Phenols and Thiophenols 548
13.3.1 Regioselectivity in O2 Oxygenations 548
13.3.2 Oxygenation of Tyrosine Derivatives 550
13.3.3 Oxygenation of Thiophenols 551
13.3.4 Mechanistic Implications 552
13.4 Oxygenation of Anilines 553
13.4.1 Oxygenation of Anilines with Metal Complexes and
t BuOOH (INDO) 553
13.4.2 Oxygenation of Anilines with O2 557
13.5 Oxygenation of Melatonin 558
13.5.1 Oxygenation with t BuOOH 559
13.5.1.1 Structure determination 560
13.5.2 Oxygenation with O2 560
13.5.2.1 Structure determination 560
13.5.3 Mechanistic Considerations 561
13.5.4 Conclusions 563
13.6 Summary 563
13.7 References 564
Contents
E Spectroscopy Theory 567
1 The Nature of the Transition Structures for Oxygen Atom
Transfer from Peroxy Acids, Dioxiranes and Chiral
Bis(silyl) Peroxides 569
Robert D. Bach
1.1 Introduction 570
1.2 Methodology 575
1.3 Results and Discussion 576
1.3.1 Classification of the Electronic Structure and Reactivity
of the O O Bond 576
1.3.1.1 The Epoxidation of Alkenes with Peroxy Acids and the Origin
of the Activation Barrier 576
1.3.1.2 Oxygen Transfer from Dioxiranes (DMDO) to Saturated
Alkanes 584
1.3.1.3 The Relative Stability of Dimethyl Dioxirane (DMDO)
and 1,2 Dioxolane A Measure of the Strain Energy of
DMDO 587
1.3.2 The Effect of 1,2 Silicon Bridging in the Enantioselective
Epoxidation of Simple Alkenes 590
1.4 References 597
2 Mechanistic Aspects of Transition Metal Catalyzed Olefin
Epoxidation from Density Functional Studies 601
Notker Rosch, Philip Gisdakis, Ilya V. Yudanov and
Cristiana Di Valentin
2.1 Background and Open Questions 601
2.2 Re Complexes: Electronic Base Effect 603
2.2.1 Model Complexes 603
2.2.2 Mechanisms 605
2.2.3 Base Effect 606
2.3 Ti Complexes: Peroxo versus Hydroperoxy Structures . . . 610
2.3.1 Model Complexes 610
2.3.2 Epoxidation Transition States 612
2.3.3 Reaction Energies 613
2.3.4 Factors Governing Reaction Activity 613
2.4 Conclusions 616
2.5 References 617
Contents
3 Near UV Photolysis of Singlet Oxygen Generated by Energy
Transfer from Aromatic Molecules in Rare Gas Matrices . . 620
Murthy S. Gudipati, Robert Wagner, Martin Kalb and
Andreas Klein
3.1 Introduction 620
3.2 Experimental Details 623
3.3 Spectroscopy and Photochemistry of Isolated Species
in Ar Matrices 624
3.3.1 O2 in Rare Gas Matrices 624
3.3.2 O atoms in rare gas matrices 625
3.3.3 PAH Molecules in Rare Gas Matrices 627
3.3.4 Anthracene 9,10 Endoperoxide and its Derivatives
in Rare Gas Matrices 628
3.4 Photophysics of the PAH/O2 CCs in Ar Matrices 630
3.4.1 Laser Photolysis of APO and DMAPO in Ar Matrices. ... 630
3.4.2 Lifetimes of Singlet Oxygen in the CCs 631
3.5 Laser Photolysis of Singlet Oxygen in the PAH/O2 CCs
in Ar Matrices 634
3.6 Conclusions and Future Perspectives 636
3.6.1 Implications to Laboratory Photochemistry 636
3.6.2 Implications to Atmospheric Chemistry 637
3.7 References 638
4 Transition Metal Ion Chemistry of Peroxides in the Gas Phase 640
Detlef Schroder, Christoph A. Schalley and Helmut Schwarz
4.1 Introduction 640
4.2 Peroxides for the Generation of Reactive Metal Oxo Species 641
4.2.1 Potential energy Surfaces of [Fe,H2,O2]+ and [Fe,H2rO2]2+ . . 643
4.3 Metal Ion Chemistry of Organic Peroxides 645
4.3.1 Reactions of Alkyl Hydroperoxides with Transition Metal
Cations 645
4.3.2 Reactions of Dialkyl Peroxides with Transition Metal Cations 646
4.4 Metal Peroxides 649
4.4.1 [M]OOR+ Ions 649
4.4.2 The [M,O2] Manifold 651
4.4.3 Peroxo Units in Metal Clusters 653
4.5 O2 Activation and Peroxides 653
4.5.1 The Spin Problem 654
4.5.2 The Stoichiometry/Selectivity Problem 655
4.5.3 Possible Solutions 656
4.6 Performance of the Research Project 658
4.7 Spin off 659
4.8 References 660
|
any_adam_object | 1 |
author2 | Adam, Waldemar |
author2_role | edt |
author2_variant | w a wa |
author_facet | Adam, Waldemar |
building | Verbundindex |
bvnumber | BV013380610 |
callnumber-first | Q - Science |
callnumber-label | QD305 |
callnumber-raw | QD305.E7 |
callnumber-search | QD305.E7 |
callnumber-sort | QD 3305 E7 |
callnumber-subject | QD - Chemistry |
classification_rvk | VK 7000 |
classification_tum | CHE 646f CHE 621f |
ctrlnum | (OCoLC)47868829 (DE-599)BVBBV013380610 |
dewey-full | 547/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547/.23 |
dewey-search | 547/.23 |
dewey-sort | 3547 223 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02060nam a2200529 c 4500</leader><controlfield tag="001">BV013380610</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001002s2000 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959812237</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527271503</subfield><subfield code="9">3-527-27150-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47868829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013380610</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD305.E7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547/.23</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 7000</subfield><subfield code="0">(DE-625)147414:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 646f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 621f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peroxide chemistry</subfield><subfield code="b">mechanistic and preparative aspects of oxygen transfer ; research report</subfield><subfield code="c">Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 664 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxydation</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Peroxydes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxides</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Peroxide</subfield><subfield code="0">(DE-588)4172773-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Peroxide</subfield><subfield code="0">(DE-588)4611379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Peroxide</subfield><subfield code="0">(DE-588)4611379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Organische Peroxide</subfield><subfield code="0">(DE-588)4172773-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, Waldemar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Deutsche Forschungsgemeinschaft</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)2007744-0</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009127237</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV013380610 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:44:49Z |
institution | BVB |
institution_GND | (DE-588)2007744-0 |
isbn | 3527271503 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009127237 |
oclc_num | 47868829 |
open_access_boolean | |
owner | DE-703 DE-739 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-29T DE-384 DE-12 DE-91G DE-BY-TUM DE-706 DE-526 DE-634 DE-188 |
owner_facet | DE-703 DE-739 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-29T DE-384 DE-12 DE-91G DE-BY-TUM DE-706 DE-526 DE-634 DE-188 |
physical | XXVII, 664 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam Weinheim [u.a.] Wiley-VCH 2000 XXVII, 664 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxydation ram Peroxydes ram Oxidation Peroxides Oxidation (DE-588)4137187-2 gnd rswk-swf Organische Peroxide (DE-588)4172773-3 gnd rswk-swf Peroxide (DE-588)4611379-4 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Peroxide (DE-588)4611379-4 s Oxidation (DE-588)4137187-2 s DE-604 Organische Peroxide (DE-588)4172773-3 s b DE-604 Adam, Waldemar edt Deutsche Forschungsgemeinschaft Sonstige (DE-588)2007744-0 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Oxydation ram Peroxydes ram Oxidation Peroxides Oxidation (DE-588)4137187-2 gnd Organische Peroxide (DE-588)4172773-3 gnd Peroxide (DE-588)4611379-4 gnd |
subject_GND | (DE-588)4137187-2 (DE-588)4172773-3 (DE-588)4611379-4 (DE-588)4143413-4 |
title | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report |
title_auth | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report |
title_exact_search | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report |
title_full | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam |
title_fullStr | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam |
title_full_unstemmed | Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam |
title_short | Peroxide chemistry |
title_sort | peroxide chemistry mechanistic and preparative aspects of oxygen transfer research report |
title_sub | mechanistic and preparative aspects of oxygen transfer ; research report |
topic | Oxydation ram Peroxydes ram Oxidation Peroxides Oxidation (DE-588)4137187-2 gnd Organische Peroxide (DE-588)4172773-3 gnd Peroxide (DE-588)4611379-4 gnd |
topic_facet | Oxydation Peroxydes Oxidation Peroxides Organische Peroxide Peroxide Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT adamwaldemar peroxidechemistrymechanisticandpreparativeaspectsofoxygentransferresearchreport AT deutscheforschungsgemeinschaft peroxidechemistrymechanisticandpreparativeaspectsofoxygentransferresearchreport |