A course in computational algebraic number theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2000
|
Ausgabe: | 4. print. |
Schriftenreihe: | Graduate texts in mathematics
138 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [527] - 539 |
Beschreibung: | XX, 551 S. |
ISBN: | 9783540556404 0387556400 3540556400 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013376443 | ||
003 | DE-604 | ||
005 | 20151126 | ||
007 | t | ||
008 | 001006s2000 gw |||| 00||| eng d | ||
020 | |a 9783540556404 |c Hardcover |9 978-3-540-55640-4 | ||
020 | |a 0387556400 |9 0-387-55640-0 | ||
020 | |a 3540556400 |9 3-540-55640-0 | ||
035 | |a (OCoLC)248180402 | ||
035 | |a (DE-599)BVBBV013376443 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-92 |a DE-19 |a DE-703 |a DE-1051 |a DE-355 |a DE-11 |a DE-29T |a DE-83 | ||
084 | |a QH 140 |0 (DE-625)141533: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a 11Y40 |2 msc | ||
100 | 1 | |a Cohen, Henri |d 1947- |e Verfasser |0 (DE-588)1018621717 |4 aut | |
245 | 1 | 0 | |a A course in computational algebraic number theory |c Henri Cohen |
250 | |a 4. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2000 | |
300 | |a XX, 551 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 138 | |
500 | |a Literaturverz. S. [527] - 539 | ||
650 | 4 | |a Algebraische Zahlentheorie - Algorithmische Zahlentheorie | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmische Zahlentheorie |0 (DE-588)4314054-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 1 | 1 | |a Algorithmische Zahlentheorie |0 (DE-588)4314054-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 2 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 138 |w (DE-604)BV000000067 |9 138 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009123507&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009123507 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804128154531397632 |
---|---|
adam_text | Titel: A course in computational algebraic number theory
Autor: Cohen, Henri
Jahr: 2000
Contents
Chapter 1 Fundamental Number-Theoretic Algorithms 1
1.1 Introduction 1
1.1.1 Algorithms 1
1.1.2 Multi-precision 2
1.1.3 Base Fields and Rings 5
1.1.4 Notations 6
1.2 The Powering Algorithms 8
1.3 Euclid s Algorithms 12
1.3.1 Euclid s and Lehmer s Algorithms 12
1.3.2 Euclid s Extended Algorithms 16
1.3.3 The Chinese Remainder Theorem 19
1.3.4 Continued Fraction Expansions of Real Numbers 21
1.4 The Legendre Symbol 24
1.4.1 The Groups (Z/nZ)* 24
1.4.2 The Legendre-Jacobi-Kronecker Symbol 27
1.5 Computing Square Roots Modulo p 31
1.5.1 The Algorithm of Tonelli and Shanks 32
1.5.2 The Algorithm of Cornacchia 34
1.6 Solving Polynomial Equations Modulo p 36
1.7 Power Detection 38
1.7.1 Integer Square Roots 38
1.7.2 Square Detection 39
1.7.3 Prime Power Detection 41
1.8 Exercises for Chapter 1 42
XIV Contents
Chapter 2 Algorithms for Linear Algebra and Lattices 46
2.1 Introduction 46
2.2 Linear Algebra Algorithms on Square Matrices 47
2.2.1 Generalities on Linear Algebra Algorithms 47
2.2.2 Gaussian Elimination and Solving Linear Systems 48
2.2.3 Computing Determinants 50
2.2.4 Computing the Characteristic Polynomial 53
2.3 Linear Algebra on General Matrices 57
2.3.1 Kernel and Image 57
2.3.2 Inverse Image and Supplement 60
2.3.3 Operations on Subspaces 62
2.3.4 Remarks on Modules 64
2.4 Z-Modules and the Hermite and Smith Normal Forms . . 66
2.4.1 Introduction to Z-Modules 66
2.4.2 The Hermite Normal Form 67
2.4.3 Applications of the Hermite Normal Form 73
2.4.4 The Smith Normal Form and Applications 75
2.5 Generalities on Lattices 79
2.5.1 Lattices and Quadratic Forms 79
2.5.2 The Gram-Schmidt Orthogonalization Procedure 82
2.6 Lattice Reduction Algorithms 84
2.6.1 The LLL Algorithm 84
2.6.2 The LLL Algorithm with Deep Insertions 90
2.6.3 The Integral LLL Algorithm 92
2.6.4 LLL Algorithms for Linearly Dependent Vectors 95
2.7 Applications of the LLL Algorithm 97
2.7.1 Computing the Integer Kernel and Image of a Matrix 97
2.7.2 Linear and Algebraic Dependence Using LLL 100
2.7.3 Finding Small Vectors in Lattices 103
2.8 Exercises for Chapter 2 106
Chapter 3 Algorithms on Polynomials 109
3.1 Basic Algorithms 109
3.1.1 Representation of Polynomials 109
3.1.2 Multiplication of Polynomials 110
3.1.3 Division of Polynomials Ill
3.2 Euclid s Algorithms for Polynomials 113
3.2.1 Polynomials over a Field 113
3.2.2 Unique Factorization Domains (UFD s) 114
3.2.3 Polynomials over Unique Factorization Domains 116
Contents XV
3.2.4 Euclid s Algorithm for Polynomials over a UFD 117
3.3 The Sub-Resultant Algorithm 118
3.3.1 Description of the Algorithm 118
3.3.2 Resultants and Discriminants 119
3.3.3 Resultants over a Non-Exact Domain 123
3.4 Factorization of Polynomials Modulo p 124
3.4.1 General Strategy 124
3.4.2 Squarefree Factorization 125
3.4.3 Distinct Degree Factorization 126
3.4.4 Final Splitting 127
3.5 Factorization of Polynomials over Z or Q 133
3.5.1 Bounds on Polynomial Factors 134
3.5.2 A First Approach to Factoring over 2 135
3.5.3 Factorization Modulo pe: Hensel s Lemma 137
3.5.4 Factorization of Polynomials over Z 139
3.5.5 Discussion 141
3.6 Additional Polynomial Algorithms 142
3.6.1 Modular Methods for Computing GCD s in Z[X] 142
3.6.2 Factorization of Polynomials over a Number Field 143
3.6.3 A Root Finding Algorithm over C 146
3.7 Exercises for Chapter 3 148
Chapter 4 Algorithms for Algebraic Number Theory I 153
4.1 Algebraic Numbers and Number Fields 153
4.1.1 Basic Definitions and Properties of Algebraic Numbers 153
4.1.2 Number Fields 154
4.2 Representation and Operations on Algebraic Numbers . . 158
4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial . . . .158
4.2.2 The Standard Representation of an Algebraic Number 159
4.2.3 The Matrix (or Regular) Representation of an Algebraic Number . 160
4.2.4 The Conjugate Vector Representation of an Algebraic Number . . 161
4.3 Trace, Norm and Characteristic Polynomial 162
4.4 Discriminants, Integral Bases and Polynomial Reduction . 165
4.4.1 Discriminants and Integral Bases 165
4.4.2 The Polynomial Reduction Algorithm 168
4.5 The Subneld Problem and Applications 174
4.5.1 The Subneld Problem Using the LLL Algorithm 174
4.5.2 The Subfield Problem Using Linear Algebra over C 175
4.5.3 The Subfieid Problem Using Algebraic Algorithms 177
4.5.4 Applications of the Solutions to the Subneld Problem 179
XVI Contents
4.6 Orders and Ideals 181
4.6.1 Basic Definitions 181
4.6.2 Ideals of 1K 186
4.7 Representation of Modules and Ideals 188
4.7.1 Modules and the Hermite Normal Form 188
4.7.2 Representation of Ideals 190
4.8 Decomposition of Prime Numbers I 196
4.8.1 Definitions and Main Results 196
4.8.2 A Simple Algorithm for the Decomposition of Primes 199
4.8.3 Computing Valuations 201
4.8.4 Ideal Inversion and the Different 204
4.9 Units and Ideal Classes 207
4.9.1 The Class Group 207
4.9.2 Units and the Regulator 209
4.9.3 Conclusion: the Main Computational Tasks
of Algebraic Number Theory 217
4.10 Exercises for Chapter 4 217
Chapter 5 Algorithms for Quadratic Fields 223
5.1 Discriminant, Integral Basis and Decomposition of Primes 223
5.2 Ideals and Quadratic Forms 225
5.3 Class Numbers of Imaginary Quadratic Fields 231
5.3.1 Computing Class Numbers Using Reduced Forms 231
5.3.2 Computing Class Numbers Using Modular Forms 234
5.3.3 Computing Class Numbers Using Analytic Formulas 237
5.4 Class Groups of Imaginary Quadratic Fields 240
5.4.1 Shanks s Baby Step Giant Step Method 240
5.4.2 Reduction and Composition of Quadratic Forms 243
5.4.3 Class Groups Using Shanks s Method 250
5.5 McCurley s Sub-exponential Algorithm 252
5.5.1 Outline of the Algorithm 252
5.5.2 Detailed Description of the Algorithm 255
5.5.3 Atkin s Variant 260
5.6 Class Groups of Real Quadratic Fields 262
5.6.1 Computing Class Numbers Using Reduced Forms 262
5.6.2 Computing Class Numbers Using Analytic Formulas 266
5.6.3 A Heuristic Method of Shanks 268
Contents XVII
5.7 Computation of the Fundamental Unit
and of the Regulator 269
5.7.1 Description of the Algorithms 269
5.7.2 Analysis of the Continued Fraction Algorithm 271
5.7.3 Computation of the Regulator 278
5.8 The Infrastructure Method of Shanks 279
5.8.1 The Distance Function 279
5.8.2 Description of the Algorithm 283
5.8.3 Compact Representation of the Fundamental Unit 285
5.8.4 Other Application and Generalization of the Distance Function . 287
5.9 Buchmann s Sub-exponential Algorithm 288
5.9.1 Outline of the Algorithm 289
5.9.2 Detailed Description of Buchmann s Sub-exponential Algorithm . 291
5.10 The Cohen-Lenstra Heuristics 295
5.10.1 Results and Heuristics for Imaginary Quadratic Fields 295
5.10.2 Results and Heuristics for Real Quadratic Fields 297
5.11 Exercises for Chapter 5 298
Chapter 6 Algorithms for Algebraic Number Theory II 303
6.1 Computing the Maximal Order 303
6.1.1 The Pohst-Zassenhaus Theorem 303
6.1.2 The Dedekind Criterion 305
6.1.3 Outline of the Round 2 Algorithm 308
6.1.4 Detailed Description of the Round 2 Algorithm 311
6.2 Decomposition of Prime Numbers II 312
6.2.1 Newton Polygons 313
6.2.2 Theoretical Description of the Buchmann-Lenstra Method .... 315
6.2.3 Multiplying and Dividing Ideals Modulo p 317
6.2.4 Splitting of Separable Algebras over Fp 318
6.2.5 Detailed Description of the Algorithm for Prime Decomposition . 320
6.3 Computing Galois Groups 322
6.3.1 The Resolvent Method 322
6.3.2 Degree 3 325
6.3.3 Degree 4 325
6.3.4 Degree 5 328
6.3.5 Degree 6 329
6.3.6 Degree 7 331
6.3.7 A List of Test Polynomials 333
6.4 Examples of Families of Number Fields 334
6.4.1 Making Tables of Number Fields 334
6.4.2 Cyclic Cubic Fields 336
XVIII Contents
6.4.3 Pure Cubic Fields 343
6.4.4 Decomposition of Primes in Pure Cubic Fields 347
6.4.5 General Cubic Fields 351
6.5 Computing the Class Group, Regulator
and Fundamental Units 352
6.5.1 Ideal Reduction 352
6.5.2 Computing the Relation Matrix 354
6.5.3 Computing the Regulator and a System of Fundamental Units . . 357
6.5.4 The General Class Group and Unit Algorithm 358
6.5.5 The Principal Ideal Problem 360
6.6 Exercises for Chapter 6 362
Chapter 7 Introduction to Elliptic Curves 367
7.1 Basic Definitions 367
7.1.1 Introduction 367
7.1.2 Elliptic Integrals and Elliptic Functions 367
7.1.3 Elliptic Curves over a Field 369
7.1.4 Points on Elliptic Curves 372
7.2 Complex Multiplication and Class Numbers 376
7.2.1 Maps Between Complex Elliptic Curves 377
7.2.2 Isogenies 379
7.2.3 Complex Multiplication 381
7.2.4 Complex Multiplication and Hilbert Class Fields 384
7.2.5 Modular Equations 385
7.3 Rank and L-functions 386
7.3.1 The Zeta Function of a Variety 387
7.3.2 L-functions of Elliptic Curves 388
7.3.3 The Taniyama-Weil Conjecture 390
7.3.4 The Birch and Swinnerton-Dyer Conjecture 392
7.4 Algorithms for Elliptic Curves 394
7.4.1 Algorithms for Elliptic Curves over C 394
7.4.2 Algorithm for Reducing a General Cubic 399
7.4.3 Algorithms for Elliptic Curves over Fp 403
7.5 Algorithms for Elliptic Curves over Q 406
7.5.1 Tate s algorithm 406
7.5.2 Computing rational points 410
7.5.3 Algorithms for computing the L-function 413
7.6 Algorithms for Elliptic Curves
with Complex Multiplication 414
7.6.1 Computing the Complex Values of j{r) 414
7.6.2 Computing the Hilbert Class Polynomials 415
Contents XIX
7.6.3 Computing Weber Class Polynomials 416
7.7 Exercises for Chapter 7 417
Chapter 8 Factoring in the Dark Ages 419
8.1 Factoring and Primality Testing 419
8.2 Compositeness Tests 421
8.3 Primality Tests 423
8.3.1 The Pocklington-Lehmer N - 1 Test 423
8.3.2 Briefly, Other Tests 424
8.4 Lehman s Method 425
8.5 Pollard s p Method 426
8.5.1 Outline of the Method 426
8.5.2 Methods for Detecting Periodicity 427
8.5.3 Brent s Modified Algorithm 429
8.5.4 Analysis of the Algorithm 430
8.6 Shanks s Class Group Method 433
8.7 Shanks s SQUFOF 434
8.8 The p - 1-method 438
8.8.1 The First Stage 439
8.8.2 The Second Stage 440
8.8.3 Other Algorithms of the Same Type 441
8.9 Exercises for Chapter 8 442
Chapter 9 Modern Primality Tests 445
9.1 The Jacobi Sum Test 446
9.1.1 Group Rings of Cyclotomic Extensions 446
9.1.2 Characters, Gauss Sums and Jacobi Sums 448
9.1.3 The Basic Test 450
9.1.4 Checking Condition £p 455
9.1.5 The Use of Jacobi Sums 457
9.1.6 Detailed Description of the Algorithm 463
9.1.7 Discussion 465
9.2 The Elliptic Curve Test 467
9.2.1 The Goldwasser-Kilian Test 467
9.2.2 Atkin s Test 471
9.3 Exercises for Chapter 9 475
XX Contents
Chapter 10 Modern Factoring Methods 477
10.1 The Continued Fraction Method 477
10.2 The Class Group Method 481
10.2.1 Sketch of the Method 481
10.2.2 The Schnorr-Lenstra Factoring Method 482
10.3 The Elliptic Curve Method 484
10.3.1 Sketch of the Method 484
10.3.2 Elliptic Curves Modulo N 485
10.3.3 The ECM Factoring Method of Lenstra 487
10.3.4 Practical Considerations 489
10.4 The Multiple Polynomial Quadratic Sieve 490
10.4.1 The Basic Quadratic Sieve Algorithm 491
10.4.2 The Multiple Polynomial Quadratic Sieve 492
10.4.3 Improvements to the MPQS Algorithm 494
10.5 The Number Field Sieve 495
10.5.1 Introduction 495
10.5.2 Description of the Special NFS when h{K) = 1 496
10.5.3 Description of the Special NFS when h(K) 1 500
10.5.4 Description of the General NFS 501
10.5.5 Miscellaneous Improvements to the Number Field Sieve .... 503
10.6 Exercises for Chapter 10 504
Appendix A Packages for Number Theory 507
Appendix B Some Useful Tables 513
B.I Table of Class Numbers of Complex Quadratic Fields . . 513
B.2 Table of Class Numbers and Units of Real Quadratic
Fields 515
B.3 Table of Class Numbers and Units of Complex Cubic
Fields 519
B.4 Table of Class Numbers and Units of Totally Real Cubic
Fields 521
B.5 Table of Elliptic Curves 524
Bibliography 527
Index 540
Errata et Addenda 547
|
any_adam_object | 1 |
author | Cohen, Henri 1947- |
author_GND | (DE-588)1018621717 |
author_facet | Cohen, Henri 1947- |
author_role | aut |
author_sort | Cohen, Henri 1947- |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV013376443 |
classification_rvk | QH 140 SK 180 |
ctrlnum | (OCoLC)248180402 (DE-599)BVBBV013376443 |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 4. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02468nam a2200577 cb4500</leader><controlfield tag="001">BV013376443</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001006s2000 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540556404</subfield><subfield code="c">Hardcover</subfield><subfield code="9">978-3-540-55640-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387556400</subfield><subfield code="9">0-387-55640-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540556400</subfield><subfield code="9">3-540-55640-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248180402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013376443</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 140</subfield><subfield code="0">(DE-625)141533:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Y40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Henri</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018621717</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course in computational algebraic number theory</subfield><subfield code="c">Henri Cohen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 551 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">138</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [527] - 539</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraische Zahlentheorie - Algorithmische Zahlentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Zahlentheorie</subfield><subfield code="0">(DE-588)4314054-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algorithmische Zahlentheorie</subfield><subfield code="0">(DE-588)4314054-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">138</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">138</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009123507&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009123507</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013376443 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:44:44Z |
institution | BVB |
isbn | 9783540556404 0387556400 3540556400 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009123507 |
oclc_num | 248180402 |
open_access_boolean | |
owner | DE-92 DE-19 DE-BY-UBM DE-703 DE-1051 DE-355 DE-BY-UBR DE-11 DE-29T DE-83 |
owner_facet | DE-92 DE-19 DE-BY-UBM DE-703 DE-1051 DE-355 DE-BY-UBR DE-11 DE-29T DE-83 |
physical | XX, 551 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Cohen, Henri 1947- Verfasser (DE-588)1018621717 aut A course in computational algebraic number theory Henri Cohen 4. print. Berlin [u.a.] Springer 2000 XX, 551 S. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 138 Literaturverz. S. [527] - 539 Algebraische Zahlentheorie - Algorithmische Zahlentheorie Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Algorithmische Zahlentheorie (DE-588)4314054-3 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Algorithmische Zahlentheorie (DE-588)4314054-3 s 1\p DE-604 Datenverarbeitung (DE-588)4011152-0 s 2\p DE-604 Graduate texts in mathematics 138 (DE-604)BV000000067 138 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009123507&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohen, Henri 1947- A course in computational algebraic number theory Graduate texts in mathematics Algebraische Zahlentheorie - Algorithmische Zahlentheorie Algebraische Zahlentheorie (DE-588)4001170-7 gnd Datenverarbeitung (DE-588)4011152-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Algorithmische Zahlentheorie (DE-588)4314054-3 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4011152-0 (DE-588)4128130-5 (DE-588)4314054-3 |
title | A course in computational algebraic number theory |
title_auth | A course in computational algebraic number theory |
title_exact_search | A course in computational algebraic number theory |
title_full | A course in computational algebraic number theory Henri Cohen |
title_fullStr | A course in computational algebraic number theory Henri Cohen |
title_full_unstemmed | A course in computational algebraic number theory Henri Cohen |
title_short | A course in computational algebraic number theory |
title_sort | a course in computational algebraic number theory |
topic | Algebraische Zahlentheorie - Algorithmische Zahlentheorie Algebraische Zahlentheorie (DE-588)4001170-7 gnd Datenverarbeitung (DE-588)4011152-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Algorithmische Zahlentheorie (DE-588)4314054-3 gnd |
topic_facet | Algebraische Zahlentheorie - Algorithmische Zahlentheorie Algebraische Zahlentheorie Datenverarbeitung Numerisches Verfahren Algorithmische Zahlentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009123507&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT cohenhenri acourseincomputationalalgebraicnumbertheory |