Physics of rotating fluids: selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2000
|
Schriftenreihe: | Lecture notes in physics
549 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 439 S. Ill., graph. Darst. |
ISBN: | 3540675140 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013366721 | ||
003 | DE-604 | ||
005 | 20001108 | ||
007 | t | ||
008 | 000926s2000 gw ad|| |||| 10||| eng d | ||
016 | 7 | |a 959775196 |2 DE-101 | |
020 | |a 3540675140 |c Pp. : DM 149.00 |9 3-540-67514-0 | ||
035 | |a (OCoLC)45129286 | ||
035 | |a (DE-599)BVBBV013366721 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-703 |a DE-706 |a DE-634 |a DE-11 | ||
050 | 0 | |a QA925 | |
050 | 0 | |a QC159 | |
082 | 0 | |a 532/.595 |2 22 | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
245 | 1 | 0 | |a Physics of rotating fluids |b selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 |c Christoph Egbers ; Gerd Pfister (ed.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2000 | |
300 | |a XIV, 439 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v 549 | |
490 | 0 | |a Physics and astronomy online library | |
650 | 4 | |a Rotating masses of fluid |v Congresses | |
650 | 4 | |a Vortex-motion |v Congresses | |
650 | 0 | 7 | |a Rotation |0 (DE-588)4178485-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flüssigkeit |0 (DE-588)4017621-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1999 |z Bremen |2 gnd-content | |
689 | 0 | 0 | |a Flüssigkeit |0 (DE-588)4017621-6 |D s |
689 | 0 | 1 | |a Rotation |0 (DE-588)4178485-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Egbers, Christoph |d 1963- |e Sonstige |0 (DE-588)122342771 |4 oth | |
711 | 2 | |a International Couette Taylor Workshop |n 11 |d 1999 |c Bremen |j Sonstige |0 (DE-588)10008792-9 |4 oth | |
830 | 0 | |a Lecture notes in physics |v 549 |w (DE-604)BV000003166 |9 549 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009117724&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009117724 |
Datensatz im Suchindex
_version_ | 1804128145339580416 |
---|---|
adam_text | CONTENTS PART I TAYLOR*COUETTE FLOW PITCHFORK BIFURCATIONS IN SMALL
ASPECT RATIO TAYLOR*COUETTE FLOW TOM MULLIN, DOUG SATCHWELL, YORINOBU
TOYA .......................... 3 1 INTRODUCTION. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 3 2A NUMERICAL BIFURCATION METHOD . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 7 2.1 GOVERNING EQUATIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 2.2 THE FINITE ELEMENT TECHNIQUE . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 9 2.3 SPATIAL DISCRETISATION AND SYMMETRY .
. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 STABILITY . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 13 2.5 BIFURCATION POINTS AND EXTENDED SYSTEMS . .
. . . . . . . . . . . . . . . . . . . . 15 3 RESULTS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 16 3.1 EXPERIMENTAL APPARATUS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2NUMERICAL AND
EXPERIMENTAL BIFURCATION SET . . . . . . . . . . . . . . . . . . . . 17
4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 18 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 19 TAYLOR*COUETTE SYSTEM WITH ASYMMETRIC
BOUNDARY CONDITIONS OLIVER MEINCKE, CHRISTOPH EGBERS, NICOLETA SCURTU,
EBERHARD B¨ ANSCH ..... 22 1 INTRODUCTION. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 2 2EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 2 3 3 MEASUREMENT TECHNIQUES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2 3 3.1 PIV . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3.2 LDV . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 25 4 NUMERICAL METHOD . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 2 6 5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 5.1
SYMMETRIC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 2 7 5.2ASYMMETRIC SYSTEM . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 34 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 35 BIFURCATION AND STRUCTURE OF FLOW BETWEEN
COUNTER-ROTATING CYLINDERS ARNE SCHULZ, GERD PFISTER
........................................... 37 1 INTRODUCTION. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 37 VIII CONTENTS 2EXPERIMENTAL SETUP . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 37 3 STABILITY DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 39 4 PRIMARY INSTABILITIES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 40 4.1 TRANSITION TO TAYLOR VORTEX FLOW (TVF) . . . .
. . . . . . . . . . . . . . . . . . . 40 4.2TRANSITION TO TIME-DEPENDENT
FLOW STATES . . . . . . . . . . . . . . . . . . . . . . 42 5 TRANSITION
FROM SPIRALS TO TVF . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 45 6 WAVY-VORTEX FLOW . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7
OBSERVATION OF PROPAGATING TAYLOR VORTICES . . . . . . . . . . . . . . .
. . . . . . . . . . 50 8 COMPARISON TO THEORETICAL INVESTIGATIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . 51 9 CONCLUSION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 53 REFERENCES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 53 SPIRAL VORTICES AND TAYLOR VORTICES IN THE ANNULUS BETWEEN
COUNTER-ROTATING CYLINDERS CHRISTIAN HOFFMANN, MANFRED L¨ UCKE
.................................. 55 1 INTRODUCTION. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 55 2SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3
LINEAR STABILITY ANALYSIS OF CCF . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 57 4 BIFURCATION PROPERTIES OF TAYLOR VORTEX
AND SPIRAL FLOW . . . . . . . . . . . . . . . 58 5 STRUCTURE OF TAYLOR
VORTEX AND SPIRAL FLOW . . . . . . . . . . . . . . . . . . . . . . . . .
. 64 6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 64 REFERENCES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 66 STABILITY OF TIME-PERIODIC FLOWS IN A
TAYLOR*COUETTE GEOMETRY CHRISTIANE NORMAND
................................................ 67 1 INTRODUCTION. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 67 2MODULATED BASE FLOW . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.1
NARROW GAP APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 73 3 STABILITY PROBLEM . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1
PERTURBATIVE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 76 4 NONLINEAR MODELS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77 4.1 AMPLITUDE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 77 4.2LORENZ MODEL . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79 5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 81 REFERENCES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 82 LOW-DIMENSIONAL DYNAMICS OF
AXISYMMETRIC MODES IN WAVY TAYLOR VORTEX FLOW JAN ABSHAGEN, GERD PFISTER
......................................... 84 1 INTRODUCTION. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 84 2EXPERIMENTAL SETUP . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3 AN
INTERMITTENCY ROUTE TO CHAOS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 86 3.1 ONSET OF *SYMMETRIC* CHAOS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2TYPE OF
INTERMITTENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 90 3.3 OBSERVATION OF SHIL*NIKOV ATTRACTOR . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92 3.4 TRANSITION TO HOPF
REGIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 94 CONTENTS IX 4 A T 3 -TORUS IN SPATIAL INHOMOGENEOUS FLOW . . . .
. . . . . . . . . . . . . . . . . . . . . . 96 4.1 AXIALLY LOCALISED
LARGE-JET MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 96 4.2ONSET OF VLF MODE AND TRANSITION TO CHAOS . . . . . . . . . . .
. . . . . . . . . 98 5 DISCUSSION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 100 SPATIOTEMPORAL
INTERMITTENCY IN TAYLOR*DEAN AND COUETTE*TAYLOR SYSTEMS INNOCENT
MUTABAZI, AFSHIN GOHARZADEH AND PATRICE LAURE ............... 102 1
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 102 2POMEAU MODEL OF
SPATIOTEMPORAL INTERMITTENCY . . . . . . . . . . . . . . . . . . . . .
103 2.1 ANALOGY WITH THE DIRECTED PERCOLATION . . . . . . . . . . . . .
. . . . . . . . . . . . 104 2.2 GINZBURG*LANDAU AMPLITUDE EQUATION . . .
. . . . . . . . . . . . . . . . . . . . . . 106 3 STI IN THE TAYLOR*DEAN
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 107 3.1 MAIN RESULTS ON CRITICAL PROPERTIES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 107 3.2STI IN OTHER EXTENDED SYSTEMS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4 STI IN
THE COUETTE*TAYLOR SYSTEM . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 109 4.1 EXPERIMENTAL SETUP . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2RESULTS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 111 4.3 PHYSICAL ORIGIN OF TURBULENT
BURSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4
KINEMATICS OF TURBULENT SPIRAL. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 113 4.5 HAYOT*POMEAU MODEL FOR SPIRAL TURBULENCE .
. . . . . . . . . . . . . . . . . . . 115 5 CONCLUSION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 116 6 ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 116 AXIAL EFFECTS IN THE
TAYLOR*COUETTE PROBLEM: SPIRAL*COUETTE AND SPIRAL*POISEUILLE FLOWS ´
ALVARO MESEGUER, FRANCESC MARQU` ES ..................................
118 1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 118 2SPIRAL*COUETTE
FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 119 2.1 LINEAR STABILITY OF THE SCF . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1 2.2
COMPUTATION OF THE NEUTRAL STABILITY CURVES . . . . . . . . . . . . . .
. . . . . . 12 2 2.3 STABILITY ANALYSIS FOR * =0 . 5 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 12 2 2.4 COMPARISON WITH
EXPERIMENTAL RESULTS ( * =0 . 8) . . . . . . . . . . . . . . . . 12 7 3
SPIRAL*POISEUILLE FLOW . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 130 3.1 LINEAR STABILITY RESULTS (
* =0 . 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
131 4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 133 REFERENCES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 135 STABILITY AND EXPERIMENTAL VELOCITY
FIELD IN TAYLOR*COUETTE FLOW WITH AN AXIAL AND RADIAL FLOW RICHARD M.
LUEPTOW ................................................ 137 1
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 137 2CYLINDRICAL COUETTE
FLOW WITH AN IMPOSED AXIAL FLOW . . . . . . . . . . . . . . . . . 139
2.1 STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 139 X CONTENTS 2.2 VELOCITY
FIELD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 143 3 CYLINDRICAL COUETTE FLOW WITH AN IMPOSED
RADIAL FLOW . . . . . . . . . . . . . . . . 148 4 COMBINED RADIAL AND
AXIAL FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 150 5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 154 TRANSPORT PHENOMENA IN
MAGNETIC FLUIDS IN CYLINDRICAL GEOMETRY STEFAN ODENBACH
................................................... 156 1 INTRODUCTION.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 156 1.1 MAGNETIC FLUIDS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
157 1.2MAGNETIC PROPERTIES OF FERROFLUIDS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 158 1.3 VISCOUS PROPERTIES OF FERROFLUIDS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2TAYLOR
VORTEX FLOW IN MAGNETIC FLUIDS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 163 2.1 TAYLOR VORTEX FLOW AS A TOOL FOR MAGNETIC
FLUID CHARACTERIZATION . . . 163 2.2 CHANGES OF THE FLOW PROFILE IN
MAGNETIC FIELDS. . . . . . . . . . . . . . . . . . . 167 3 TAYLOR VORTEX
FLOW IN MAGNETIC FLUIDS WITH RADIAL HEAT GRADIENT . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4
CONCLUSION AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 169 REFERENCES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 170 SECONDARY BIFURCATIONS OF STATIONARY FLOWS RITA
MEYER-SPASCHE, JOHN H. BOLSTAD, FRANK POHL ...................... 171 1
STATIONARY TAYLOR-VORTEX FLOWS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 171 2CONVECTION ROLLS WITH STRESS-FREE
BOUNDARIES . . . . . . . . . . . . . . . . . . . . . . . . 172 2.1
CRITICAL CURVES OF THE PRIMARY SOLUTION . . . . . . . . . . . . . . . .
. . . . . . . . 174 2.2 PURE-MODE SOLUTIONS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 175 3 SECONDARY
BIFURCATIONS ON PURE MODE SOLUTIONS. . . . . . . . . . . . . . . . . . .
. . . 177 3.1 THE 2-ROLL,4-ROLL INTERACTION IN A MODEL PROBLEM . . . . .
. . . . . . . . . . . 177 3.2THE PERTURBATION APPROACH . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 179 3.3 A HOPF CURVE .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 180 3.4 THE 2-ROLL, 6-ROLL INTERACTION IN A MODEL
PROBLEM . . . . . . . . . . . . . . . . 181 3.5 OTHER INTERACTIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 183 4 NUMERICAL INVESTIGATIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 184 4.1 THE RAYLEIGH*B´
ENARD CODE USED . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 184 4.2CONVECTION ROLLS WITH RIGID BOUNDARIES ON TOP AND BOTTOM . .
. . . . . 187 4.3 SECONDARY BIFURCATIONS IN THE TAYLOR PROBLEM REVISITED
. . . . . . . . . . 191 REFERENCES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 193 TAYLOR VORTICES AT DIFFERENT GEOMETRIES MANFRED WIMMER
.................................................. 194 1 INTRODUCTION. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 194 2FLOW BETWEEN CONES WITH A CONSTANT
WIDTH OF THE GAP . . . . . . . . . . . . . . . . 195 2.1 EXPERIMENTAL
SET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 195 2.2 FLOW FIELD AND TAYLOR VORTICES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 195 2.3 INFLUENCE OF INITIAL
AND BOUNDARY CONDITIONS. . . . . . . . . . . . . . . . . . . . 198 3
COMBINATIONS OF CIRCULAR AND CONICAL CYLINDERS . . . . . . . . . . . . .
. . . . . . . . . 2 00 CONTENTS XI 3.1 ROTATING CYLINDER IN A CONE . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 01
3.2ROTATING CONE IN A CYLINDER . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 2 01 4 FLOW BETWEEN CONES WITH DIFFERENT APEX
ANGLES . . . . . . . . . . . . . . . . . . . . . . 2 03 5 FLOW BETWEEN
ROTATING ELLIPSOIDS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 2 06 5.1 OBLATE ROTATING ELLIPSOIDS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 2 09 5.2PROLATE
ROTATING ELLIPSOIDS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 2 10 6 CONCLUSIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 11
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 2 12 PART II SPHERICAL
COUETTE FLOW ISOTHERMAL SPHERICAL COUETTE FLOW MARKUS JUNK, CHRISTOPH
EGBERS ...................................... 215 1 INTRODUCTION. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2 15 2SUMMARY OF PREVIOUS INVESTIGATIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 18 3
EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 2 2 0 3.1 SPHERICAL COUETTE FLOW
APPARATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
0 3.2LDV MEASURING SYSTEM AND VISUALISATION METHODS . . . . . . . . . .
. . . . 2 2 2 4 TRANSITIONS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 4.1
SMALL AND MEDIUM GAP INSTABILITIES . . . . . . . . . . . . . . . . . . .
. . . . . . . . 2 2 4 4.2BIFURCATION BEHAVIOUR . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 7 4.3 WIDE GAP
INSTABILITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 2 2 8 5 CONCLUSION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 31 VORTICAL STRUCTURES AND VELOCITY FLUCTUATIONS OF SPIRAL AND WAVY
VORTICES IN THE SPHERICAL COUETTE FLOW KOICHI NAKABAYASHI, WEIMING SHA
................................... 234 1 INTRODUCTION. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 2 34 2ONSET REYNOLDS NUMBERS OF VARIOUS DISTURBANCES . . .
. . . . . . . . . . . . . . . . . 2 35 3 STRUCTURE AND FORMATION OF THE
SPIRAL TG VORTICES . . . . . . . . . . . . . . . . . . . 2 36 4 MOTION
OF THE AZIMUTHALLY TRAVELLING WAVES . . . . . . . . . . . . . . . . . .
. . . . . . . 2 41 5 SPECTRAL ANALYSIS OF VELOCITY FLUCTUATIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . 2 44 6 RELAMINARIZATION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2 47 7 CONCLUDING REMARKS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 54
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 2 54 SPHERICAL COUETTE
FLOW WITH SUPERIMPOSED THROUGHFLOW KARL B¨ UHLER
....................................................... 256 1
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 2 56 2NUMERICAL SIMULATIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 2 60 3 EXPERIMENTS. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 60 4
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 2 67 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 2 67 XII CONTENTS THREE-DIMENSIONAL NATURAL
CONVECTION IN A NARROW SPHERICAL SHELL MING LIU, CHRISTOPH EGBERS
........................................ 269 1 INTRODUCTION. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 2 69 2MATHEMATICAL FORMULATION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 70 3 RESULTS
AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 2 73 3.1 AXISYMMETRIC BASIC FLOW. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 73
3.2THREE-DIMENSIONAL CONVECTIVE MOTIONS . . . . . . . . . . . . . . . .
. . . . . . . . . 2 74 3.3 TRANSIENT EVOLUTION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 87 4
CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2 91 REFERENCES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 2 92 MAGNETOHYDRODYNAMIC FLOWS IN SPHERICAL SHELLS
RAINER HOLLERBACH .................................................. 295
1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 2 95 2THE INDUCTION
EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 2 96 3 KINEMATIC DYNAMO ACTION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 4 THE
LORENTZ FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 304 5 MAGNETIC COUETTE FLOW . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 306 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
INTERMITTENCY AT ONSET OF CONVECTION IN A SLOWLY ROTATING,
SELF-GRAVITATING SPHERICAL SHELL PASCAL CHOSSAT
.................................................... 317 1 INTRODUCTION.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 317 2HETEROCLINIC CYCLES IN SYSTEMS WITH O
(3) SYMMETRY AND THE SPHERICAL B´ ENARD PROBLEM . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 318 3 PERTURBATION INDUCED BY
A SLOW ROTATION OF THE DOMAIN . . . . . . . . . . . . . . 32 2
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 32 4 PART III GOERTLER
VORTICES AND CURVED SURFACES CONTROL OF SECONDARY INSTABILITY OF THE
CROSSFLOW AND G¨ ORTLER-LIKE VORTICES (SUCCESS AND PROBLEMS) VIKTOR V.
KOZLOV, GENRICH R. GREK ................................... 327 PART I.
ACTIVE CONTROL OVER SECONDARY INSTABILITY IN A SWEPT WING BOUNDARY LAYER
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 PART II. TRANSITION AND CONTROL EXPERIMENTS IN A BOUNDARY LAYER WITH
G¨ ORTLER-LIKE VORTICES . . . . . . . . . . . . . . . . . . . . . . .
336 PART III. INFLUENCE OF RIBLETS ON A BOUNDARY LAYER WITH G¨
ORTLER-LIKE VORTICES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 346 REFERENCES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 349 CONTENTS XIII PART IV ROTATING ANNULUS HIGHER ORDER
DYNAMICS OF BAROCLINIC WAVES BERND SITTE, CHRISTOPH EGBERS
....................................... 355 1 INTRODUCTION. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 355 2THE ROTATING ANNULUS EXPERIMENT . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 357 3 STABILITY . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 359 4 NONLINEAR DYNAMICS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 362 4.1 MEASUREMENT TECHNIQUE . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 362 4.2FLOW CHARACTERIZATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
4.3 BIFURCATION SCENARIO . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 371 4.4 COMPARISON TO TAYLOR*COUETTE
FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 5
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 374 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 375 PART V PLANE COUETTE FLOW SUPERFLUID
COUETTE FLOW CARLO F. BARENGHI
.................................................. 379 1 LIQUID HELIUM .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 379 2HELIUM II AND LANDAU*S TWO-FLUID MODEL .
. . . . . . . . . . . . . . . . . . . . . . . . . . 379 3 VORTEX LINES
AND THE BREAKDOWN OF LANDAU*S MODEL . . . . . . . . . . . . . . . . . .
381 4 THE GENERALIZED LANDAU EQUATIONS. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 383 5 THE BASIC STATE . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 386 6 ROTATIONS OF THE INNER CYLINDER: ABSOLUTE ZERO . . . . . .
. . . . . . . . . . . . . . . . . 389 7 ROTATIONS OF THE INNER CYLINDER:
FINITE TEMPERATURES . . . . . . . . . . . . . . . . . . 390 8 ROTATIONS
OF THE INNER CYLINDER: NONLINEAR EFFECTS . . . . . . . . . . . . . . . .
. . . . 394 9 ROTATIONS OF THE OUTER CYLINDER . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 394 10 CO-ROTATIONS AND
COUNTER-ROTATIONS OF THE CYLINDERS . . . . . . . . . . . . . . . . . .
396 11 FINITE ASPECT RATIOS AND END EFFECTS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 396 12DISCUSSION AND OUTLOOK . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 397 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 TERTIARY
AND QUATERNARY SOLUTIONS FOR PLANE COUETTE FLOW WITH THERMAL
STRATIFICATION R.M. CLEVER, FRIEDRICH H. BUSSE
..................................... 399 1 INTRODUCTION. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 399 2MATHEMATICAL FORMULATION OF THE PROBLEM . . . . . .
. . . . . . . . . . . . . . . . . . . . 401 3 STEADY THREE-DIMENSIONAL
WAVY ROLL SOLUTIONS IN AN AIR LAYER . . . . . . . . . . 404 4 WAVY ROLL
SOLUTIONS IN DEPENDENCE ON THE GRASHOF NUMBER. . . . . . . . . . . . 408
5 TRANSITION TO QUATERNARY STATES OF FLUID FLOW . . . . . . . . . . . .
. . . . . . . . . . . . 413 6 CONCLUDING REMARKS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 416 XIV CONTENTS ON
THE ROTATIONALLY SYMMETRIC LAMINAR FLOW OF NEWTONIAN FLUIDS INDUCED BY
ROTATING DISKS ANTONIO DELGADO
................................................... 417 1 INTRODUCTION.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 417 2ISOTHERM, STEADY FLOW OF A NEWTONIAN
FLUID . . . . . . . . . . . . . . . . . . . . . . . . . 419 2.1
GOVERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 419 2.2 VON K´ ARM´ AN*S SOLUTION FOR A
SINGLE ROTATING DISK . . . . . . . . . . . . . . . . 42 0 2.3 FLOW
BETWEEN CO-ROTATING DISKS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42 2 3 CONCLUSIONS AND FUTURE INVESTIGATIONS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 437 REFERENCES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 438
|
any_adam_object | 1 |
author_GND | (DE-588)122342771 |
building | Verbundindex |
bvnumber | BV013366721 |
callnumber-first | Q - Science |
callnumber-label | QA925 |
callnumber-raw | QA925 QC159 |
callnumber-search | QA925 QC159 |
callnumber-sort | QA 3925 |
callnumber-subject | QA - Mathematics |
classification_rvk | UD 8220 UF 4000 |
ctrlnum | (OCoLC)45129286 (DE-599)BVBBV013366721 |
dewey-full | 532/.595 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.595 |
dewey-search | 532/.595 |
dewey-sort | 3532 3595 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02075nam a22004938cb4500</leader><controlfield tag="001">BV013366721</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20001108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000926s2000 gw ad|| |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959775196</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540675140</subfield><subfield code="c">Pp. : DM 149.00</subfield><subfield code="9">3-540-67514-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45129286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013366721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA925</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC159</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.595</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of rotating fluids</subfield><subfield code="b">selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999</subfield><subfield code="c">Christoph Egbers ; Gerd Pfister (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 439 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">549</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotating masses of fluid</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-motion</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rotation</subfield><subfield code="0">(DE-588)4178485-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flüssigkeit</subfield><subfield code="0">(DE-588)4017621-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1999</subfield><subfield code="z">Bremen</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Flüssigkeit</subfield><subfield code="0">(DE-588)4017621-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rotation</subfield><subfield code="0">(DE-588)4178485-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Egbers, Christoph</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122342771</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">International Couette Taylor Workshop</subfield><subfield code="n">11</subfield><subfield code="d">1999</subfield><subfield code="c">Bremen</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)10008792-9</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">549</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">549</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009117724&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009117724</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1999 Bremen gnd-content |
genre_facet | Konferenzschrift 1999 Bremen |
id | DE-604.BV013366721 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:44:35Z |
institution | BVB |
institution_GND | (DE-588)10008792-9 |
isbn | 3540675140 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009117724 |
oclc_num | 45129286 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-706 DE-634 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-706 DE-634 DE-11 |
physical | XIV, 439 S. Ill., graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics Physics and astronomy online library |
spelling | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 Christoph Egbers ; Gerd Pfister (ed.) Berlin [u.a.] Springer 2000 XIV, 439 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics 549 Physics and astronomy online library Rotating masses of fluid Congresses Vortex-motion Congresses Rotation (DE-588)4178485-6 gnd rswk-swf Flüssigkeit (DE-588)4017621-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1999 Bremen gnd-content Flüssigkeit (DE-588)4017621-6 s Rotation (DE-588)4178485-6 s DE-604 Egbers, Christoph 1963- Sonstige (DE-588)122342771 oth International Couette Taylor Workshop 11 1999 Bremen Sonstige (DE-588)10008792-9 oth Lecture notes in physics 549 (DE-604)BV000003166 549 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009117724&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 Lecture notes in physics Rotating masses of fluid Congresses Vortex-motion Congresses Rotation (DE-588)4178485-6 gnd Flüssigkeit (DE-588)4017621-6 gnd |
subject_GND | (DE-588)4178485-6 (DE-588)4017621-6 (DE-588)1071861417 |
title | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 |
title_auth | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 |
title_exact_search | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 |
title_full | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 Christoph Egbers ; Gerd Pfister (ed.) |
title_fullStr | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 Christoph Egbers ; Gerd Pfister (ed.) |
title_full_unstemmed | Physics of rotating fluids selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 Christoph Egbers ; Gerd Pfister (ed.) |
title_short | Physics of rotating fluids |
title_sort | physics of rotating fluids selected topics of the 11th international couette taylor workshop held at bremen germany 20 23 july 1999 |
title_sub | selected topics of the 11th International Couette Taylor Workshop, held at Bremen, Germany, 20 - 23 July 1999 |
topic | Rotating masses of fluid Congresses Vortex-motion Congresses Rotation (DE-588)4178485-6 gnd Flüssigkeit (DE-588)4017621-6 gnd |
topic_facet | Rotating masses of fluid Congresses Vortex-motion Congresses Rotation Flüssigkeit Konferenzschrift 1999 Bremen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009117724&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT egberschristoph physicsofrotatingfluidsselectedtopicsofthe11thinternationalcouettetaylorworkshopheldatbremengermany2023july1999 AT internationalcouettetaylorworkshopbremen physicsofrotatingfluidsselectedtopicsofthe11thinternationalcouettetaylorworkshopheldatbremengermany2023july1999 |