Character theory for the odd order theorem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2000
|
Schriftenreihe: | London Mathematical Society: London Mathematical Society lecture note series
272 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Aus d. Franz. übers. |
Beschreibung: | VII, 154 S. |
ISBN: | 052164660X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013365669 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 000929s2000 |||| 00||| eng d | ||
020 | |a 052164660X |9 0-521-64660-X | ||
035 | |a (OCoLC)245841530 | ||
035 | |a (DE-599)BVBBV013365669 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-20 |a DE-11 | ||
050 | 0 | |a QA177 | |
082 | 0 | |a 511.2 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Peterfalvi, Thomas |e Verfasser |4 aut | |
240 | 1 | 0 | |a Théorie des charactéres dans le théoreme de Feit et Thompson[u.a.] |
245 | 1 | 0 | |a Character theory for the odd order theorem |c Thomas Peterfalvi |
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2000 | |
300 | |a VII, 154 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society: London Mathematical Society lecture note series |v 272 | |
500 | |a Aus d. Franz. übers. | ||
650 | 4 | |a Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem | |
650 | 0 | 7 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feit-Thompson-Theorem |0 (DE-588)4391595-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feit-Thompson-Theorem |0 (DE-588)4391595-4 |D s |
689 | 0 | 1 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 2 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society: London Mathematical Society lecture note series |v 272 |w (DE-604)BV000000130 |9 272 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116853&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009116853 |
Datensatz im Suchindex
_version_ | 1804128143810756608 |
---|---|
adam_text | Contents
Preface vii
Part I Character Theory for the Odd Order Theorem
Introduction 1
Notation 3
1. Preliminary Results from Character Theory 5
2. The Dade Isometry 10
3. Tl Subsets with Cyclic Normalizers 15
4. The Dade Isometry for a Certain Type of Subgroup 21
5. Coherence 25
6. Some Coherence Theorems 30
7. Non existence of a Certain Type of Group of Odd Order .... 38
8. Structure of a Minimal Simple Group of Odd Order 41
9. On the Maximal Subgroups of G of Types II, 111 and IV .... 50
10. Maximal Subgroups of Types III, IV and V 58
11. Maximal Subgroups of Types III and IV 64
12. Maximal Subgroups of Type I 69
13. The Subgroups S and 7 75
14. Non existence of G 87
Notes 93
References 95
Part II A Theorem of Suzuki
Introduction 97
Notation 99
Chapter I. General Properties of G 100
1. Consequences of Hypothesis (Al) 100
2. The Structure of Q and of K 103
3. Application of the Induction Hypothesis 104
Chapter II. The First Case 108
Chapter III. The Structure of H 115
1. The Structure of Q 115
2. The Case in which si has Order 5 118
3. The Action of KW on S 119
Chapter IV. Characterization of PSU(3, q) 122
1. The Mappings /, g and h 122
2. Preliminary Calculation 123
3. Determination of / 129
4. The Case V ^ W 132
Appendix I. A Special Case of a Theorem of Huppert 135
Appendix II. On Near Fields 137
Appendix III. On Suzuki 2 Groups 139
Appendix IV. The Feit Sibley Theorem 144
References 151
Index to Parts I and II 153
|
any_adam_object | 1 |
author | Peterfalvi, Thomas |
author_facet | Peterfalvi, Thomas |
author_role | aut |
author_sort | Peterfalvi, Thomas |
author_variant | t p tp |
building | Verbundindex |
bvnumber | BV013365669 |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 |
callnumber-search | QA177 |
callnumber-sort | QA 3177 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 260 |
ctrlnum | (OCoLC)245841530 (DE-599)BVBBV013365669 |
dewey-full | 511.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.2 |
dewey-search | 511.2 |
dewey-sort | 3511.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01959nam a2200457 cb4500</leader><controlfield tag="001">BV013365669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000929s2000 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052164660X</subfield><subfield code="9">0-521-64660-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245841530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013365669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA177</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peterfalvi, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Théorie des charactéres dans le théoreme de Feit et Thompson[u.a.]</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Character theory for the odd order theorem</subfield><subfield code="c">Thomas Peterfalvi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 154 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">272</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus d. Franz. übers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="0">(DE-588)4391595-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feit-Thompson-Theorem</subfield><subfield code="0">(DE-588)4391595-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society: London Mathematical Society lecture note series</subfield><subfield code="v">272</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">272</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116853&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009116853</subfield></datafield></record></collection> |
id | DE-604.BV013365669 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:44:34Z |
institution | BVB |
isbn | 052164660X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009116853 |
oclc_num | 245841530 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 DE-11 |
physical | VII, 154 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | London Mathematical Society: London Mathematical Society lecture note series |
series2 | London Mathematical Society: London Mathematical Society lecture note series |
spelling | Peterfalvi, Thomas Verfasser aut Théorie des charactéres dans le théoreme de Feit et Thompson[u.a.] Character theory for the odd order theorem Thomas Peterfalvi Cambridge Cambridge Univ. Press 2000 VII, 154 S. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society: London Mathematical Society lecture note series 272 Aus d. Franz. übers. Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem Charakter Gruppentheorie (DE-588)4158438-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Feit-Thompson-Theorem (DE-588)4391595-4 gnd rswk-swf Feit-Thompson-Theorem (DE-588)4391595-4 s Endliche Gruppe (DE-588)4014651-0 s Charakter Gruppentheorie (DE-588)4158438-7 s DE-604 London Mathematical Society: London Mathematical Society lecture note series 272 (DE-604)BV000000130 272 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116853&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Peterfalvi, Thomas Character theory for the odd order theorem London Mathematical Society: London Mathematical Society lecture note series Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem Charakter Gruppentheorie (DE-588)4158438-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd Feit-Thompson-Theorem (DE-588)4391595-4 gnd |
subject_GND | (DE-588)4158438-7 (DE-588)4014651-0 (DE-588)4391595-4 |
title | Character theory for the odd order theorem |
title_alt | Théorie des charactéres dans le théoreme de Feit et Thompson[u.a.] |
title_auth | Character theory for the odd order theorem |
title_exact_search | Character theory for the odd order theorem |
title_full | Character theory for the odd order theorem Thomas Peterfalvi |
title_fullStr | Character theory for the odd order theorem Thomas Peterfalvi |
title_full_unstemmed | Character theory for the odd order theorem Thomas Peterfalvi |
title_short | Character theory for the odd order theorem |
title_sort | character theory for the odd order theorem |
topic | Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem Charakter Gruppentheorie (DE-588)4158438-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd Feit-Thompson-Theorem (DE-588)4391595-4 gnd |
topic_facet | Endliche Gruppe - Charakter <Gruppentheorie> - Feit-Thompson-Theorem Charakter Gruppentheorie Endliche Gruppe Feit-Thompson-Theorem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116853&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT peterfalvithomas theoriedescharacteresdansletheoremedefeitetthompsonua AT peterfalvithomas charactertheoryfortheoddordertheorem |