Incompatibility and incongruity in wild and cultivated plants: with 19 tables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Ausgabe: | 2., totally rev. and enl. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 265 - 308. - 1. Aufl. u.d.T.: Nettancourt, Dreux de: Incompatibility in angiosperms |
Beschreibung: | XXIX, 322 S. Ill., graph. Darst. |
ISBN: | 3540652175 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013308604 | ||
003 | DE-604 | ||
005 | 20020114 | ||
007 | t | ||
008 | 000815s2001 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 959215701 |2 DE-101 | |
020 | |a 3540652175 |9 3-540-65217-5 | ||
035 | |a (OCoLC)313837237 | ||
035 | |a (DE-599)BVBBV013308604 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-M49 |a DE-29T |a DE-11 | ||
082 | 0 | |a 581.35 | |
082 | 0 | |a 581.3/5 | |
084 | |a WN 7400 |0 (DE-625)151072: |2 rvk | ||
084 | |a BIO 220f |2 stub | ||
084 | |a BIO 453f |2 stub | ||
084 | |a BIO 450f |2 stub | ||
100 | 1 | |a Nettancourt, Dreux de |e Verfasser |4 aut | |
245 | 1 | 0 | |a Incompatibility and incongruity in wild and cultivated plants |b with 19 tables |c Dreux de Nettancourt |
250 | |a 2., totally rev. and enl. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XXIX, 322 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 265 - 308. - 1. Aufl. u.d.T.: Nettancourt, Dreux de: Incompatibility in angiosperms | ||
650 | 0 | 7 | |a Bedecktsamer |0 (DE-588)4144254-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inkompatibilität |0 (DE-588)4128495-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbststerilität |0 (DE-588)4180851-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bedecktsamer |0 (DE-588)4144254-4 |D s |
689 | 0 | 1 | |a Selbststerilität |0 (DE-588)4180851-4 |D s |
689 | 0 | 2 | |a Inkompatibilität |0 (DE-588)4128495-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009074244&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009074244 |
Datensatz im Suchindex
_version_ | 1804128078917533696 |
---|---|
adam_text | * 1 THE BASIC FEATURES OF SELF-INCOMPATIBILITY .... 1 1.1 A DEFINITION
........................... 1 1.2 NATURE OF THE SI REACTION
.................. 2 1.3 CLASSIFICATION OF SI SYSTEMS .................
3 1.3.1 THE TIME OF GENE ACTION IN THE PISTIL ....... 3 1.3.2 THE TIME
OF GENE ACTION IN THE STAMEN ..... 4 1.3.2.1 DETERMINATION OF THE POLLEN
PHENOTYPE IN GAMETOPHYTIC SYSTEMS ................ 4 1.3.2.2
DETERMINATION OF THE POLLEN PHENOTYPE IN SPOROPHYTIC SYSTEMS . . . . . .
. . . . . . . . . . . . 6 1.3.3 THE ASSOCIATION WITH FLORAL POLYMORPHISM
. . . 7 1.3.3.1 THE DISTYLIC CONDITION .................. 8 1.3.3.2
TRISTYLY .............................. 9 1.3.4 THE SITE OF GENE
EXPRESSION .............. 10 1.3.4.1 STIGMATIC INHIBITION
.................... 10 1.3.4.2 STYLAR INHIBITION
....................... 11 1.3.4.3 OVARIAN INHIBITION
..................... 12 1.3.5 THE NUMBER OF GENETIC LOCI ANDTHE
INVOLVEMENT OF POLYALLELIC SERIES ..... 13 1.3.5.1 THE GENETIC BASIS OF
RECOGNITION .......... 13 1.3.5.1.1 CONTROL BY A SINGLE BUT COMPLEX
LOCUS ..... 13 1.3.5.1.2 RECOGNITION BY TWO UNLINKEDLOCI IN THE GRASSES
......................... 14 1.3.5.1.3 RECOGNITION BY TWO OR MORE LOCI
IN SEVERAL OTHER FAMILIES ................ 14 1.3.5.2 POLYALLELISM AT
THE INCOMPATIBILITY LOCI ...... 14 1.3.5.3 HOW MANY GENES ARE INVOLVED
IN THE REJECTION PROCESS? ................. 15 1.3.5.3.1 STIGMATIC SSI
.......................... 15 1.3.5.3.2 STIGMATIC GSI
......................... 15 1.3.5.3.3 STYLAR GSI
............................ 15 CONTENTS 1.4 RECAPITULATION ON THE
CLASSIFICATION OF SI SYSTEMS .......................... 16 1.5 THE
DISTRIBUTION OF SI SYSTEMS IN THE ANGIOSPERMS ...................... 17
1.5.1 INCIDENCE OF SI IN THE FAMILIES OF FLOWERING PLANTS
..................... 17 1.5.2 DISTRIBUTION OF SI AMONG SPECIES
IMPORTANT FOR AGRICULTURE ................ 21 1.6 CHRONOLOGY OF EARLY
RESEARCHES ON SI .......... 23 * 2 THE GENETICS OF SELF-INCOMPATIBILITY
........ 25 2.1 SPOROPHYTIC HETEROMORPHIC SYSTEMS ........... 25 2.1.1
DISTYLY .............................. 25 2.1.1.1 A SUPERGENE. . .
........................ 26 2.1.1.2 . . .WITHIN WHICH RECOMBINATION
OCCURS ..... 27 2.1.1.3 THE SUPERGENE IS CONTROLLED BY MODIFIER GENES
...................... 28 2.1.2 TRISTYLY ..............................
28 2.1.2.1 HOMOMORPHIC VARIANTS ANDSUPERGENES IN TRISTYLY . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 30 2.1.2.2 ONE GENOTYPE, TWO
PHENOTYPES ........... 30 2.1.2.3 DOMINANCE CHANGE IN O. ARTICULA
.......... 30 2.1.2.4 BREEDING BEHAVIOR CAN BE INDEPENDENT OF FLORAL
HETEROMORPHISM ................ 31 2.1.3 MULTI-ALLELIC SERIES IN SPECIES
WITH INCOMPLETE HETEROSTYLY? .............. 31 2.2 SPOROPHYTIC
HOMOMORPHIC STIGMATIC CONTROL ..... 31 2.2.1 TWO DI-ALLELIC LOCI
..................... 31 2.2.2 A SINGLE LOCUS WITH POLYALLELIC SERIES,
DOMINANCE ANDCOMPETITIVE INTERACTION: THE BRASSICA TYPE . . . . . . . .
. . . . . . . . . . . . . . 32 2.2.2.1 THE BRASSICA HAPLOTYPES
................. 34 2.2.2.1.1 CLASS-I HAPLOTYPES .....................
35 2.2.2.1.2 CLASS-II HAPLOTYPES ..................... 35 2.2.2.2
EXTENSION OF THE HAPLOTYPE CONCEPT TO OTHER GENES, OTHER FAMILIES
ANDOTHER SYSTEMS .... 36 2.2.2.3 S-LOCUS-RELATED(SLR) GENES IN BRASSICA
..... 37 2.2.2.4 MANY GENES IN THE S-LINKAGE GROUP ........ 37 2.2.3 A
SINGLE SPOROPHYTIC STIGMATIC LOCUS WITH MULTIPLE ALLELES BUT WITHOUT
DOMINANCE ANDCOMPETITIVE INTERACTION .............. 38 2.2.4 THREE OR
FOUR POLYALLELIC LOCI IN ERUCA SATIVA . 38 XII * CONTENTS 2.3
GAMETOPHYTIC HOMOMORPHIC S SYSTEMS WITH POLYALLELIC SERIES
..................... 39 2.3.1 ONE-LOCUS STIGMATIC CONTROL: THE CASE OF
THE STYLE-LESS FIELDPOPPY ...... 39 2.3.1.1 GENETICS OF SI POLYMORPHISM
IN P. RHOEAS ANDOTHER SPECIES WITH POLYALLELIC, MONOFACTORIAL SI . . . .
. . . . . . . . . . . . . . . . . . . 40 2.3.1.2 THE NUMBER OF S ALLELES
IN P. RHOEAS ....... 42 2.3.2 TWO LOCI-STIGMATIC CONTROL IN THE GRASSES
. . . 42 2.3.2.1 BREEDING EFFICIENCY OF THE S*Z SYSTEM ....... 43
2.3.2.2 THE SIZE OF POLYALLELIC SERIES .............. 43 2.3.3 FOUR-LOCI
STIGMATIC GAMETOPHYTIC CONTROL IN THE RANUNCULACEAE, THE CHENOPODIACEAE
ANDTHE LILIACEAE ....................... 45 2.3.3.1 FEW ALLELES PER
LOCUS IN TETRA-FACTORIAL STIGMATIC GSI . . . . . . . . . . . . . . . . .
. . . . . . . . 46 2.3.3.2 LINKAGE BETWEEN THE FOUR SI GENES .........
47 2.3.3.3 SI IS MAINTAINEDIN TETRAPLOID R. REPENS ..... 47 2.3.4
MONOFACTORIAL STYLAR GSI WITH POLYALLELIC SERIES ................... 47
2.3.4.1 THE SIZE OF POLYALLELIC SERIES IN STYLAR MONOFACTORIAL GSI . . .
. . . . . . . . . . . . 48 2.3.4.2 THE STRUCTURE OF THE S LOCUS IN
STYLAR MONOFACTORIAL GSI . . . . . . . . . . . . . . . 49 2.3.4.3
IDENTIFICATION OF S-BEARING CHROMOSOMES .... 50 2.3.5 BIFACTORIAL STYLAR
GSI WITH EPISTATIC RELATIONSHIPS ............... 50 2.3.6 THREE OR FOUR
S LOCI IN A COMPLEMENTARY SYSTEM OF LOTUS TENUIS ................... 52
2.3.7 OVARIAN GAMETOPHYTIC SI ................ 52 2.3.7.1 POST-ZYGOTIC
OSI? ...................... 53 2.3.7.2 CYCLIC, POST-ZYGOTIC, POLYGENIC
SI .......... 54 2.3.7.3 INCOMPATIBLE POLLEN TUBES THAT PREVENT OVULE
DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . 54 2.4
SPOROPHYTIC-GAMETOPHYTIC SYSTEMS ........... 55 2.4.1 THREE GENES
PARTICIPATE IN THE OVARIAN GAMETOPHYTIC-SPOROPHYTIC SYSTEM OF THEOBROMA
CACAO .................... 55 2.4.2 SPOROPHYTIC STIGMATIC SI REVISITED
IN THE CRUCIFERAE ANDTHE COMPOSITAE ....... 56 2.4.3 A ONE-LOCUS
SPOROPHYTIC SYSTEM WITH TRACES OF GAMETOPHYTIC POLLEN CONTROL IN THE
CARYOPHYLLACEAE .................. 58 XIII CONTENTS * 2.5 GENES INVOLVED
IN THE REJECTION PHASE OF SI ..... 59 2.5.1 IN STIGMATIC SI SYSTEMS
.................. 59 2.5.2 THE REJECTION PHASE IN SPECIES WITH STYLAR
GSI . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.3 SI IN THE
OVARY ........................ 61 2.6 SI IN POLYPLOIDS
......................... 62 2.7 EQUILIBRIUM FREQUENCIES OF SI ALLELES
.......... 62 2.7.1 TWO ALLELES AT ONE LOCUS IN A SPOROPHYTIC SYSTEM
................. 62 2.7.2 TRIMORPHISM .......................... 63
2.7.3 ONE POLYALLELIC LOCUS IN A SPOROPHYTIC SYSTEM ................. 63
2.7.4 POLYALLELIC SERIES IN A MONOFACTORIAL GAMETOPHYTIC SYSTEM
................... 64 2.7.5 TWO POLYALLELIC GAMETOPHYTIC LOCI .........
64 2.7.6 THE NUMBER OF POSSIBLE ALLELIC COMBINATIONS IN THEOBROMA
......................... 65 2.8 THE MAINTENANCE AND EFFICIENCY OF
INCOMPATIBILITY SYSTEMS ................. 65 2.8.1 POPULATION SIZES
ANDNUMBERS OF INCOMPATIBILITY ALLELES ................ 66 2.8.1.1
SMALLEST NUMBERS OF ALLELES REQUIRED ....... 66 2.8.1.2 *MOLECULAR
RESTRAINTS TO THE CODING CAPACITY OF THE S GENE IN PAPAVER *? . . . . .
. . . . . . . . . . 66 2.8.1.3 CONSEQUENCES OF HIGH NUMBERS OF ALLELES
AT THE SI LOCI .......................... 67 2.8.1.4 LINKAGE EFFECT AS A
MAIN CAUSE TO UNEQUAL S-ALLELE FREQUENCIES IN BRITISH POPULATIONS OF P.
RHOEAS ........................... 67 2.8.2 THE SELECTION OF RARE
ALLELES ANDREPLACEMENT PROCESSES ............... 67 2.8.3 EXPLANATIONS
TO THE LARGE NUMBERS OF ALLELES FOUNDIN OENOTHERA , TRIFOLIUM ,
CARTHAMUS AND LOLIUM ........................... 68 2.8.3.1 HIGH
MUTATION RATES .................... 68 2.8.3.2 SUBDIVISIONS OF
POPULATIONS ............... 69 2.8.3.3 MIGRATION ANDHARDSEEDCARRYOVER
........ 69 2.8.4 THE EFFICIENCY OF SI MECHANISMS FOR PREVENTING UNIONS
BETWEEN NEAR RELATIVES ............ 70 2.8.4.1 A COMPARISON OF
PARENT-OFFSPRING RELATIONSHIPS IN HETEROSTYLIC ANDGAMETOPHYTIC SYSTEMS
............... 70 XIV * CONTENTS 2.8.5 EFFECTS OF POLLEN
ANDSEEDDISPERSAL, OVERLAPPING GENERATIONS ANDPLANT-SIZE VARIATIONS IN
POPULATIONS AT EQUILIBRIUM ..... 71 2.8.6 A NEW MATHEMATICAL APPROACH TO
SI POLYMORPHISM IN A ONE-LOCUS GAMETOPHYTIC SYSTEM
............................... 71 2.8.7 THE CONCEPT OF A
FREQUENCY-EQUIVALENT POPULATION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 72 * 3 CELLULAR AND MOLECULAR BIOLOGY OF
SELF-INCOMPATIBILITY ................... 73 3.1 HETEROMORPHIC
INCOMPATIBILITY ............... 74 3.1.1 A SYSTEM OF ITS OWN
.................... 74 3.1.1.1 THE RESEARCH APPROACHES ARE DIFFERENT
...... 74 3.1.1.2 SEVERAL REJECTION SITES ................... 74 3.1.1.3
REJECTION CASCADES ..................... 75 3.1.1.4 STIGMATIC REJECTION
MAY OCCUR ON WET STIGMAS 76 3.1.1.5 THE REJECTION SITES ARE NOT ALWAYS
TYPICAL OF A SPOROPHYTIC SYSTEM . . . . . . . . . . . . . . . . . 76
3.1.1.6 THE INCOMPATIBILITY LOCI ARE USUALLY DI-ALLELIC 76 3.1.1.7 ROLE
OF THE INTERNAL ENVIRONMENT IN THE SPECIFICITY OF INCOMPATIBILITY
PRODUCTS . 77 3.1.2 OCCURRENCE ANDFUNCTION OF STIGMA ANDPOLLEN
POLYMORPHISM ................ 78 3.1.2.1 ANALYSES OF POLLEN WALLS
................. 79 3.1.2.2 THE ROLE OF POLLEN ANDSTIGMA DIMORPHISM ON
POLLEN AFFIXATION ANDPOLLEN METABOLISM . . 81 3.1.2.2.1 EFFECTS OF
DIFFERENCES IN THE MORPHOLOGY OF THE STIGMATIC CUTICLE ANDIN THE
SCULPTURING OF POLLEN EXINE ........................ 81 3.1.2.2.2
FUNCTION OF THE POLLEN EXINE IN JEPSONIA ..... 83 3.1.2.2.3 AVAILABILITY
OF EXUDATE ON THE STIGMA SURFACE . 83 3.1.2.2.4 VARIATIONS IN OSMOTIC
PRESSURES ........... 83 3.1.3 THE MOLECULAR BIOLOGY OF HETEROMORPHIC SI
. . 84 3.1.3.1 IDENTIFICATION OF S-RECOGNITION FACTORS ...... 84 3.1.3.2
IS THERE A FUNDAMENTAL DIFFERENCE BETWEEN SI IN HETEROMORPHIC SPECIES
ANDSI IN SPOROPHYTIC-HOMOMORPHIC SYSTEMS? ..... 85 3.2 HOMOMORPHIC
SPOROPHYTIC STIGMATIC SI: THE BRASSICA TYPE ........................ 87
3.2.1 MORPHOLOGY ANDSTRUCTURE OF STIGMA ANDPOLLEN SURFACES
..................... 87 3.2.1.1 THE STIGMA SURFACE
..................... 87 3.2.1.2 THE POLLEN EXINE ANDTHE POLLEN COATING
.... 88 XV CONTENTS * 3.2.1.2.1 DIFFERENCES IN THE POLLEN EXINE
SCULPTURING BETWEEN SSI ANDGSI .................... 89 3.2.2 THE ROUTE
OF THE COMPATIBLE POLLEN TUBE THROUGH THE STIGMA . . . . . . . . . . . .
. . . . . . . . 89 3.2.2.1 SELF-INCOMPATIBLE BRASSICA OLERACEA .........
89 3.2.2.2 SELF-COMPATIBLE ARABIDOPSIS THALIANA ....... 90 3.2.3
STIGMATIC PROTEINS INVOLVEDIN THE RECOGNITION OF INCOMPATIBLE POLLEN . .
. . . . . . . . . . . . . . . . 91 3.2.3.1 IMMUNOLOGICAL DETECTION
ANDPURIFICATION OF SLG . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 91 3.2.3.1.1 PURIFICATION OF SLG ..................... 92
3.2.3.2 ESSENTIAL FEATURES OF SLG ................ 92 3.2.3.2.1 CLONING
OF THE GENE ENCODING SLG ......... 92 3.2.3.2.2 THE SLG SEQUENCE
...................... 93 3.2.3.2.3 STRUCTURE OF SLG ANDHOMOLOGIES
BETWEEN ALLELES ........................ 94 3.2.3.2.4 NATURE, ORIGIN
ANDFREQUENCY OF SEQUENCE VARIATIONS BETWEEN DIFFERENT ALLELES ........
94 3.2.3.2.5 CO-EVOLUTION OF SLG ANDSRK ............. 94 3.2.3.2.6
STRUCTURAL ANDFUNCTIONAL DISTINCTNESS OF SLG IN CLASS-II HAPLOTYPES
................... 95 3.2.3.3 THE S-RECEPTOR KINASE GENE, SRK
.......... 95 3.2.3.3.1 ESSENTIAL FEATURES OF SRK ................ 96
3.2.3.4 A DIRECT METHODFOR THE CLONING OF S HAPLOTYPES
........................ 98 3.2.3.5 SLG ANDSRK ARE PRESENT, OFTEN AS
TRACES, IN OTHER PARTS OF THE BRASSICA ANDTRANSGENIC NICOTIANA FLOWERS
...................... 99 3.2.3.5.1 IN THE POLLEN
.......................... 99 3.2.3.5.2 IN ANTHER WALLS
........................ 99 3.2.3.5.3 IN THE TRANSMITTING TISSUE OF THE
STIGMA, STYLE AND OVARY . . . . . . . . . . . . . . . . . . . . . . . .
99 3.2.3.5.4 IN TRANSGENIC TOBACCO ................... 99 3.2.3.6 A
PUTATIVE RECEPTOR KINASE GENE IN IPOMOEA TRIFIDA ......................
99 3.2.3.7 SLG ANDSRK HAVE MANY RELATIVES ......... 100 3.2.3.7.1
MEMBERS OF THE S MULTI-GENE FAMILY THAT ARE LINKED TO THE S LOCUS . . .
. . . . . . . . . 101 3.2.3.7.2 S-LOCUS-RELATEDSEQUENCES IN ARABIDOPSIS
.... 102 3.2.3.7.3 RELATIONSHIP OF SRK/SLG TO THE PUTATIVE KINASE
RECEPTOR (ZMPK1) FROM MAIZE ............ 102 3.2.3.7.4 ARC1, A PUTATIVE
DOWNSTREAM EFFECTOR FOR SRK 102 3.2.4 THE S-SPECIFIC POLLEN DETERMINANT
......... 102 3.2.4.1 EXPECTEDFEATURES OF THE S DETERMINANTS .... 102
3.2.4.1.1 ALLELISM TO THE SRK OR SLG GENES? ......... 102 XVI * CONTENTS
3.2.4.1.2 LIKELIHOODOF A DIMER MECHANISM IN SI SYSTEMS OF THE BRASSICA
TYPE . . . . . . . . . . . . . . . . . . . . 103 3.2.4.1.3 LINKAGE OF
POLLEN ANDSTIGMA DETERMINANTS TO THE S HAPLOTYPE .....................
103 3.2.4.1.4 SPOROPHYTIC EXPRESSION .................. 104 3.2.4.2
CONTRIBUTION OF THE TAPETUM TO THE POLLEN COAT AND TO SI . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 104 3.2.4.2.1 CONTRIBUTION TO
POLLEN COATING ............ 104 3.2.4.2.2 EVIDENCE THAT THE POLLEN
COATING CARRIES THE POLLEN S DETERMINANT ................ 104 3.2.4.2.3
TAPETAL ORIGIN OF POLLEN S DETERMINANTS? .... 105 3.2.4.3 THE SEARCH FOR
THE POLLEN S DETERMINANT: RECENT HISTORY ......................... 105
3.2.4.3.1 THE S-GLYCOPROTEIN-LIKE ANTHER PROTEIN ..... 106 3.2.4.3.2 THE
S-LOCUS ANTHER .................... 106 3.2.4.3.3 POLLEN-COAT PROTEIN
CLASS A .............. 106 3.2.4.3.4 POLLEN-COAT PROTEIN A2
.................. 107 3.2.4.3.5 SLL2-S9 ANDS-LOCUS ANTHER-EXPRESSED S9
GENE .............................. 107 3.2.4.3.6 THE SYSTEMATIC
ANALYSIS OF S AND S-RELATED REGIONS . . . . . . . . . . . . . . . . . .
. 107 3.2.4.4 FINDING THE POLLEN DETERMINANT ........... 108 3.2.4.4.1
THE GENE FULFILS THE REQUIREMENTS FOR THE HYPOTHESIZEDPOLLEN DETERMINANT
.... 108 3.2.4.4.2 SCR IS A RELATIVE OF PCPS ................ 108
3.2.4.4.3 ORIGIN (SPOROPHYTIC ANDTAPETAL) OF SCR .... 108 3.2.5 WHAT
HAPPENS AFTER AN INCOMPATIBLE POLLINATION? ...........................
109 3.2.5.1 POLLEN CAPTURE BY THE STIGMA ............. 109 3.2.5.2
RELATIONSHIPS BETWEEN POLLEN HYDRATION AND SI . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 110 3.2.5.3 STIGMATIC S
GLYCOPROTEINS ARE GLYCOSYLATED. . . 110 3.2.5.4 THE RECOGNITION OF
INCOMPATIBLE POLLEN ..... 110 3.2.5.5 REJECTION OF INCOMPATIBLE POLLEN
........... 112 3.2.5.6 THE ROLE OF CALLOSE ..................... 112
3.3 STIGMATIC MONOFACTORIAL MULTIALLELIC GSI IN PAPAVER RHOEAS
........................ 113 3.3.1 COMPATIBLE ANDINCOMPATIBLE
POLLINATIONS . . . 113 3.3.1.1 MORPHOLOGY ANDGROWTH OF COMPATIBLE POLLEN
TUBES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3.1.2 INCOMPATIBLE POLLEN GRAINS ANDPOLLEN TUBES . 113 3.3.2 AN IN
VITRO BIOASSAY FOR THE STUDY OF STIGMATIC S PROTEINS * POLLEN METABOLISM
ANDPOLLEN- STIGMA INTERACTIONS AFTER SELF-POLLINATION .... 114 XVII
CONTENTS * 3.3.3 CHARACTERIZATION OF STIGMATIC S PROTEINS AND CLONING OF
THE STIGMATIC S GENE . . . . . . . . 114 3.3.3.1 ISOLATION
ANDCHARACTERIZATION OF THE STIGMATIC S PROTEINS . . . . . . . . . . . .
. . . 114 3.3.3.1.1 ISOLATION ANDTESTING OF FUNCTION .......... 114
3.3.3.1.2 CO-SEGREGATION WITH S ALLELES ............. 114 3.3.3.1.3
CHARACTERISTICS OF THE PROTEIN ............. 115 3.3.3.1.4 S ACTIVITY, S
SPECIFICITY ANDTHE ROLE OF GLYCOSYLATION . . . . . . . . . . . . . . . .
. . . . . . . . 115 3.3.3.1.5 POLYMORPHISM OF S SEQUENCES .............
115 3.3.3.1.6 THE S PROTEINS ARE NOT MAJOR PROTEINS OF THE STIGMA . . .
. . . . . . . . . . . . . . . . . . . . . . 115 3.3.3.1.7 THE S PROTEIN
IS NOT A RIBONUCLEASE ........ 116 3.3.3.2 CLONING ANDNUCLEOTIDE
SEQUENCING OF THE STIGMATIC S GENE .................. 116 3.3.3.3
BIOLOGICAL ACTIVITY OF MUTANT DERIVATIVES OF THE S PROTEIN . . . . . . .
. . . . . . . . . . . . . . . . . 116 3.3.3.4 LARGE NUMBERS OF ORFS WITH
HOMOLOGY TO THE STIGMATIC S GENE OF PAPAVER ARE PRESENT IN THE
ARABIDOPSIS GENOME . . . . . . . . . . . . . . . 117 3.3.4 POLLEN GENES
THAT PARTICIPATE IN THE SI RESPONSE ............................. 117
3.3.4.1 INHIBITION OF INCOMPATIBLE POLLEN TUBES DEPENDS ON POLLEN-GENE
EXPRESSION ........ 117 3.3.4.2 INVOLVEMENT OF A SIGNAL-TRANSDUCTION
MECHANISM IN THE SI RESPONSE ............ 118 3.3.4.3 A MEMBRANE
GLYCOPROTEIN THAT BINDS STIGMATIC S PROTEINS IN POLLEN . . . . . . . . .
. . . . . . . . . . . . 119 3.3.4.4 PROGRAMMEDCELL DEATH IS THE ENDPOINT
OF THE SI RESPONSE IN PAPAVER RHOEAS ....... 121 3.4 STIGMATIC
BI-FACTORIAL GSI IN THE GRASSES ........ 121 3.4.1 FLOWERS
ANDPOLLINATION .................. 122 3.4.1.1 STIGMA ANDPOLLEN
...................... 122 3.4.1.2 COMPATIBLE POLLINATION
.................. 122 3.4.1.3 SELF-POLLINATION ........................
122 3.4.2 SI IN PHALARIS COERULESCENS ................ 123 3.4.2.1
IDENTIFICATION OF RESTRICTION FRAGMENTS LINKED TO THE POLLEN S GENE . .
. . . . . . . . . . . . 123 3.4.2.2 BM2 IS NOT THE S GENE
................... 123 3.4.2.3 INVOLVEMENT OF THIOREDOXINS IN THE SI
MECHANISM? ........................... 124 3.4.3 SI IN RYE
............................. 125 3.4.3.1 EVIDENCE THAT THE SI MECHANISM
INVOLVES PHOSPHORYLATION ANDIS CA 2+ DEPENDENT ..... 125 3.4.3.1.1 IN
SITU POLLEN PHOSPHORYLATION ............ 125 XVIII * CONTENTS 3.4.3.1.2
GEL ELECTROPHORESIS OF POLLEN PHOSPHOPROTEINS 125 3.4.3.1.3 EFFECTS OF
INHIBITORS ..................... 126 3.4.3.2 A MODEL FOR THE SI
MECHANISM IN RYE ....... 126 3.4.4 APPLICABILITY OF THE MODEL TO ALL SI
SPECIES OF GRASSES ............................ 127 3.4.4.1 THE S ANDZ
LOCI ARE NOT INTERCHANGEABLE . . . 127 3.4.4.2 CONSERVEDS SEQUENCES OF
BRASSICA AMPLIFY S-LINKED FRAGMENTS IN RYE . . . . . . . . . . . . . . .
127 3.5 MONOFACTORIAL STYLAR GSI WITH MULTIPLE ALLELES: THE NICOTIANA
TYPE ....................... 128 3.5.1 POLLEN-TUBE MORPHOLOGY ANDGROWTH
IN COMPATIBLE STYLES .................... 128 3.5.1.1 OBSERVATION UNDER
THE LIGHT MICROSCOPE ..... 128 3.5.1.1.1 ROLE ANDSPECIFICITY OF THE
STIGMATIC EXUDATE . 129 3.5.1.1.2 MITOSIS IN THE GENERATIVE NUCLEUS OF
PETUNIA HYBRIDA ...................... 129 3.5.1.2 ELECTRON MICROSCOPY
.................... 129 3.5.2 MORPHOLOGY ANDGROWTH OF INCOMPATIBLE
TUBES . . . . . . . . . . . . . . . . . . . 130 3.5.2.1 INCOMPATIBLE
TUBES OF N. ALATA UNDER EPIFLUORESCENCE ILLUMINATION ......... 130
3.5.2.2 ELECTRON MICROSCOPY .................... 131 3.5.2.3 THE ROLE OF
CALLOSE ..................... 132 3.5.2.4 MITOSIS IN THE GENERATIVE
NUCLEUS OF P. HYBRIDA .......................... 132 3.5.3 EARLY
RESEARCH ON THE NATURE OF THE SI REACTION . . . . . . . . . . . . . . .
. . . . . . . 133 3.5.3.1 SI AS A PROCESS OF GROWTH INHIBITION ........
133 3.5.3.2 IS THE S PHENOTYPE OF MATURE STYLES DETERMINED BEFORE
POLLINATION? ...................... 133 3.5.3.2.1 EVIDENCE FROM IN VITRO
TESTS .............. 133 3.5.3.2.2 DIVERGING RESULTS
...................... 133 3.5.3.3 FIRST MODELS OF THE GAMETOPHYTIC
STYLAR SI MECHANISM ......................... 134 3.5.3.4 TOWARDS THE
DETECTION OF STYLAR S PROTEINS . . . 135 3.5.4 ISOLATION, CLONING
ANDSEQUENCING OF A STYLAR PROTEIN SEGREGATING WITH THE S2 ALLELE OF N.
ALATA ............................ 136 3.5.5 THE
S-ASSOCIATEDGLYCOPROTEINS ARE RIBO- NUCLEASES, ANDSI INVOLVES THE
DEGRADATION OF POLLEN RNA . . . . . . . . . . . . . . . . . . . . . . .
. . 137 3.5.6 EVIDENCE THAT THE S PROTEINS OF PETUNIA AND NICOTIANA ARE
RESPONSIBLE FOR THE S-ALLELE- SPECIFIC RECOGNITION ANDREJECTION OF SELF
POLLEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
XIX CONTENTS * 3.5.6.1 INDUCTION OF LOSS AND GAIN OF FUNCTIONS AT THE S
LOCUS OF P. INFLATA ............... 138 3.5.6.2 S-ALLELE-SPECIFIC
POLLEN-TUBE REJECTION IN TRANSGENIC NICOTIANA .................. 139
3.5.6.3 PROOF THAT RIBONUCLEASE IS INVOLVED IN THE REJECTION OF SELF
POLLEN ............. 139 3.5.7 MAIN FEATURES OF THE S-RIBONUCLEASE GENE
ANDOF RIBONUCLEASES .................... 139 3.5.7.1 DISTRIBUTION
ANDSTRUCTURAL FEATURES OF THE GENE ........................... 139
3.5.7.1.1 SOLANACEAE ............................ 140 3.5.7.1.2 ROSACEAE
............................. 141 3.5.7.1.3 SCROPHULARIACEAE
....................... 141 3.5.7.2 WHAT ARE THE EFFECTS OF S
RIBONUCLEASES ON RRNA AND MRNA? . . . . . . . . . . . . . . . . . . .
141 3.5.7.3 ARE THE EFFECTS OF RIBONUCLEASES IRREVERSIBLE? . 142 3.5.7.4
WHY POLLEN TUBES ARE NOT INHIBITED IN THE STIGMA . . . . . . . . . . . .
. . . . . . . . . . . . . 143 3.5.7.5 WHAT DETERMINES THE S SPECIFICITY
OF STYLAR RIBONUCLEASES? ................. 143 3.5.7.5.1 THE ROLE OF THE
CARBOHYDRATE MOIETY ....... 143 3.5.7.5.2 THE ROLE OF HV REGIONS
................. 144 3.5.8 S-GENE PRODUCTS IN POLLEN GRAINS
ANDPOLLEN-PISTIL RECOGNITION ............. 145 3.5.8.1 THE
S-RIBONUCLEASE GENE IS EXPRESSED IN DEVELOPING POLLEN GRAINS . . .
............ 145 3.5.8.1.1 N. ALATA .............................. 145
3.5.8.1.2 P. HYBRIDA ............................ 145 3.5.8.1.3 L.
PERUVIANUM ......................... 145 3.5.8.2 . . .BUT POLLEN S
RIBONUCLEASES DO NOT DETERMINE THE POLLEN S PHENOTYPE ..................
145 3.5.8.3 INVOLVEMENT OF PROTEIN KINASE? ............ 146 3.5.8.3.1 A
POLLEN RECEPTOR-LIKE KINASE 1 IN P. INFLATA .. 146 3.5.8.3.2 IN VITRO
PHOSPHORYLATION OF THE S RIBONUCLEASES FROM N. ALATA
......................... 147 3.5.8.4 THE ROLE OF POLLEN DETERMINANTS
........... 147 3.5.8.5 CURRENT RESEARCH REGARDING THE IDENTIFICATION OF
POLLEN S DETERMINANTS ................. 149 3.5.8.5.1 A FUNCTIONAL
GENOME APPROACH TO SEARCH FOR THE POLLEN S GENE OF P. INFLATA ..........
149 3.5.8.5.2 TOWARDS THE FINE-SCALE MAPPING OF THE S LOCUS IN PETUNIA
HYBRIDA ...................... 149 3.5.8.5.3 USE OF A TWO-HYBRIDSYSTEM
TO IDENTIFY THE POLLEN S COMPONENT IN S. CHACOENSE ..... 149 XX *
CONTENTS * 4BREAKDOWN OF THE SELF-INCOMPATIBILITY CHARACTER, S MUTATIONS
AND THE EVOLUTION OF SELF-INCOMPATIBLE SYSTEMS ............. 151 4.1 THE
PHYSIOLOGICAL BREAKDOWN OF SI ............ 152 4.1.1 AGE FACTORS
........................... 152 4.1.1.1 BUDPOLLINATION
........................ 152 4.1.1.2 DELAYEDPOLLINATION, USE OF
STOREDPOLLEN ANDEND-OF-SEASON EFFECTS ................ 153 4.1.2
IRRADIATION ............................ 153 4.1.2.1 CHRONIC EXPOSURE TO
LOW DOSE RATES OF RAD IATION . . . . . . . . . . . . . . . . . . . . . .
. . . . 154 4.1.2.2 ACUTE IRRADIATION OF STYLES ................ 154
4.1.2.3 HIGH TEMPERATURES ..................... 155 4.1.3 APPLICATION OF
CO2 ..................... 156 4.1.4 HORMONES ANDINHIBITORS
................ 156 4.1.4.1 * -NAPHTHALENE ACETIC ACID AND INDOLE
ACETIC ACID . . . . . . . . . . . . . . . . . . 156 4.1.4.2 EFFECTS OF
TRANSCRIPTION ANDTRANSLATION INHIBITORS ................ 157 4.1.4.3
EFFECTS OF PROTEINASE ANDTUNICAMYCIN ...... 158 4.1.4.4 EFFECTS OF
INHIBITORS OF PROTEIN PHOSPHATASE . . 158 4.1.5 PISTIL GRAFTING
......................... 159 4.1.6 MUTILATIONS, INJECTIONS ANDTHE
EFFECTS OF CASTRATION ON POLLEN-TUBE GROWTH ....... 159 4.1.7 MENTOR
EFFECTS ......................... 160 4.1.7.1 MENTOR POLLEN IS MORE
EFFICIENT WHEN INACTIVATEDOR KILLED ............... 160 4.1.7.2 NATURE
OF THE MENTOR EFFECTS .............. 161 4.2 GENETIC BREAKDOWN OF SI AND
S-GENE MUTATIONS .. 161 4.2.1 LOSS OF S FUNCTION IN POLLEN GRAINS OF
SPECIES WITH SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 161 4.2.2 LOSS OF S FUNCTION IN THE POLLEN OF SPECIES WITH GSI . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.2.1 FUNCTION
LOSS OF THE POLLEN DETERMINANT ASSOCIATEDWITH THE PRESENCE OF A FREE
CENTRIC FRAGMENT ............................. 163 4.2.2.1.1 COMPETITIVE
INTERACTION .................. 163 4.2.2.1.2 COMPLEMENTATION
...................... 165 4.2.2.1.3 RESTITUTION
........................... 165 4.2.2.1.4 LIKELIHOODOF THE THREE
HYPOTHESES ........ 166 4.2.2.1.5 ORIGIN OF THE CENTRIC FRAGMENT IN
*POLLEN-PART* SC MUTANTS OF N. ALATA .................. 166 XXI CONTENTS
* 4.2.2.1.6 CURRENT APPROACHES TO THE BIOMOLECULAR STUDY OF PPMS
ASSOCIATED WITH ADDITIONAL CHROMOSOMAL MATERIAL .................. 166
4.2.2.2 FUNCTION LOSS OF THE POLLEN DETERMINANT NOT ASSOCIATEDWITH THE
PRESENCE OF A CENTRIC FRAGMENT ................... 168 4.2.2.3 THE
FREQUENCY OF S MUTATIONS LEADING TO THE LOSS OF SI FUNCTION IN POLLEN
GRAINS . . . 169 4.2.2.4 PRODUCTION OF CULTIVARS WITH MODIFIED BREEDING
REGIMES: EXAMPLES OF TRADITIONAL ANDMOLECULAR APPROACHES ...............
170 4.2.2.4.1 CHERRY STELLA .......................... 170 4.2.2.4.2
ELSTAR ................................ 170 4.2.2.5 THE USE OF
*POLLEN-PART* MUTATIONS FOR THE PROD UCTION OF F1 HYBRID SEED . . . . .
. . 171 4.2.3 LOSS OF S FUNCTION IN THE STIGMAS OF SPECIES WITH SSI . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.2.3.1
UTILITY OF SC STYLAR MUTATIONS ANDOF SILENCING STUDIES FOR THE
UNDERSTANDING AND EXPLOITATION OF SI . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 172 4.2.3.1.1 BREAKDOWN OF SI THROUGH
SILENCING EFFECTS . . . 172 4.2.3.1.2 WHY GENE SILENCING OCCURS
.............. 173 4.2.3.1.3 SCIENTIFIC INTEREST OF S-GENE SILENCING
....... 173 4.2.3.1.4 THE IMPORTANCE OF SPECIFIC S-FUNCTION LOSSES FOR
BASIC ANDAPPLIEDRESEARCH ............ 174 4.2.4 LOSS ANDGAIN OF
S-FUNCTION APPROACHES IN THE STIGMA OR STYLE OF SPECIES WITH GSI . . .
174 4.2.4.1 SC MUTANTS ARISING SPONTANEOUSLY OR FROM CONVENTIONAL
MUTAGENIC TREATMENT . . 174 4.2.4.2 GENETIC CONSTRUCTS ANDABLATIONS OF
S-GENE PRODUCTS LEADING TO SC AND THEIR IMPORTANCE FOR SI RESEARCH
........................ 175 4.2.4.2.1 HOW TO INDUCE FUNCTION LOSS
THROUGH THE USE OF ANTI-SENSE DNA . . . . . . . . 175 4.2.4.2.2 LOSS OF
FUNCTION ANDGAIN OF FUNCTION APPROACHES ARE COMPLEMENTARY ...........
176 4.2.4.2.3 COMPETITION EFFECTS OCCURRING IN THE STYLES OF PETUNIA
PLANTS WITH A TRI-ALLELIC S2*S3*S3 * GENOTYPE
............................. 177 4.2.4.3 PRESENCE ANDEXPRESSION OF S
RIBONUCLEASES IN SELF-COMPATIBLE LINES ................. 177 4.2.4.4
LOSS ANDGAIN OF FUNCTION IN THE POLLEN OF PLANTS WITH MONO-FACTORIAL
STYLAR GSI .... 178 4.2.5 SC THROUGH GENETIC CHANGES OCCURRING OUTSIDE
THE S LOCUS .................... 178 4.2.5.1 IN SPOROPHYTIC SYSTEMS
.................. 179 XXII * CONTENTS 4.2.5.2 IN GAMETOPHYTIC SYSTEMS
................ 180 4.2.5.2.1 MUTATIONS OF MAJOR GENES ................
180 4.2.5.2.2 ACTION OF POLYGENES ..................... 180 4.2.5.2.3 S
ALLELES TRAPPEDIN TRANSLOCATION RINGS ..... 181 4.2.6 SC IN POLYPLOIDS
....................... 182 4.2.6.1 TETRAPLOIDFORMS ANDTETRAPLOIDSPECIES
ARE OFTEN SELF-COMPATIBLE ................ 182 4.2.6.2 COMPETITIVE
INTERACTION IN DIPLOID HETERO-ALLELIC POLLEN .................... 182
4.2.6.3 EFFECTS OF POLYPLOIDY ON SI IN MONOCOTS ANDCERTAIN PRIMITIVE
DICOTS .............. 183 4.2.7 THE GENERATION OF NEW SI ALLELES
.......... 184 4.2.7.1 CONFLICTING EVIDENCE REGARDING THE ROLE OF HV
REGIONS IN THE SOLANACEAE? .......... 184 4.2.7.1.1 ONLY FOUR AAS ARE
RESPONSIBLE FOR THE DIFFER- ENCE IN SPECIFICITY BETWEEN THE S11 ANDS13
ALLELES OF SOLANUM CHACOENSE ............. 184 4.2.7.1.2 IN PETUNIA AND
NICOTIANA , THE RIBONUCLEASE SEQUENCES RESPONSIBLE FOR POLLEN
RECOGNITION APPEAR TO BE SCATTEREDTHROUGHOUT THE MOLECULE
............................. 185 4.2.7.2 NEW S ALLELES APPEAR IN
INBREDPOPULATIONS . . 187 4.2.7.3 ORIGIN OF NEW SPECIFITIES
................. 188 4.2.7.4 THE DUAL SPECIFICITY OF NEW S ALLELES MAY
PLAY A KEY ROLE IN THE GENERATION OF NEW S ALLELES 188 4.2.7.5 THE ROLE
OF THE GENETIC BACKGROUND ........ 189 4.2.7.6 METHODS FOR A RAPID AND
RELIABLE IDENTIFICATION OF S ALLELES IN PLANT BREEDING . . 189 4.3
EVOLUTION OF SI .......................... 190 4.3.1 ALLELIC DIVERSITY
........................ 190 4.3.1.1 ORIGIN, DISTRIBUTION ANDEXTENT OF
DIVERGENCES AMONG FUNCTIONAL S ALLELES IN THE GSI SYSTEM OF THE
SOLANACEAE ....................... 191 4.3.1.1.1 INTRAGENIC
CROSSING-OVER OR ACCUMULATION OF SINGLE BP CHANGES? ...................
191 4.3.1.1.2 DISTRIBUTION ANDVARIABILITY OF S ALLELES ..... 192
4.3.1.1.3 INTER-SPECIES VARIATION IN S-ALLELE AGE AND NUMBER . . . . . .
. . . . . . . . . . . . . . . . . . . . 192 4.3.1.2 S ALLELES IN OTHER
FAMILIES WITH A RIBONUCLEASE GSI SYSTEM ........................... 192
4.3.1.2.1 DIFFERENCES BETWEEN THE SCROPHULARIACEAE ANDTHE SOLANACEAE
..................... 192 4.3.1.2.2 DIFFERENCES BETWEEN THE ROSACEAE
ANDTHE SOLANACEAE ..................... 193 4.3.1.2.3 S-RNASE
POLYMORPHISM IN THE ROSACEAE ..... 193 XXIII CONTENTS * 4.3.1.3 HOMOLOGY
OR CONVERGENCE AMONG S RIBONUCLEASES? ......................... 193
4.3.1.3.1 WHAT HAPPENS IN LEGUMES? .............. 194 4.3.1.4 SLG ANDSRK
ALLELIC DIVERGENCES IN THE BRASSICACEAE ..................... 194
4.3.1.4.1 HYPER-MUTABILITY OF THE S LOCUS ........... 194 4.3.1.4.2 THE
S LOCUS IS NOT A HOT SPOT OF RECOMBINATION . . . . . . . . . . . . . . .
. . . . . . . 195 4.3.1.4.3 DISTRIBUTION ANDEXTENT OF VARIATIONS BETWEEN
S ALLELES ............................. 196 4.3.1.4.4 EXTENT OF THE
DIVERGENCE BETWEEN SLG ANDSRK OF A SAME S HAPLOTYPE ..................
197 4.3.1.4.5 HOW IS SEQUENCE SIMILARITY USUALLY MAINTAINED BETWEEN SRK
ANDSLG IN BRASSICA HAPLOTYPES? 197 4.3.1.5 S ALLELES ARE VERY OLD
................... 197 4.3.1.5.1 S-RIBONUCLEASE POLYMORPHISM IN THE
SOLANACEAE AROSE BEFORE THE EMERGENCE OF NICOTIANA , PETUNIA AND SOLANUM
................... 198 4.3.1.5.2 THE ORIGIN OF SLG ANDSRK
.............. 199 4.3.1.6 PCR METHODS FOR ASSESSING DIVERGENCE AMONG S
ALLELES ....................... 201 4.3.1.6.1 IN THE CRUCIFERS
........................ 201 4.3.1.6.2 IN SOLANACEOUS SPECIES
.................. 201 4.3.2 THE MULTIPLE ORIGINS OF SI SYSTEMS
......... 202 4.3.2.1 EARLY VIEWS ........................... 202
4.3.2.1.1 SI IS A PRIMITIVE OUTBREEDING MECHANISM THAT PROMOTEDTHE
EXPANSION OF ANGIOSPERMS 202 4.3.2.1.2 GAMETOPHYTIC POLY-ALLELIC
INCOMPATIBILITY IS THE ANCESTRAL SYSTEM ANDOCCURREDONLY ONCE . . . 203
4.3.2.2 CURRENT THOUGHTS ...................... 203 4.3.2.2.1 TOWARDS A
GENERAL AGREEMENT REGARDING THE MULTIPLE ORIGINS OF SI ................
203 4.3.2.2.2 MULTIPLE GENE SYSTEMS AS AN ORIGIN OF MONO-FACTORIAL GSI?
.................. 204 4.3.2.2.3 S RIBONUCLEASES COULDBE OPERATING IN A
VERY VAST MAJORITY OF SPECIES FROM THE DICOT FAMILIES ..................
205 4.3.3 ORIGIN OF THE DIFFERENT HOMOMORPHIC SI SYSTEMS ANDTHEIR
RELATIONSHIPS ........... 206 4.3.3.1 ORIGIN OF STYLAR MONO-FACTORIAL
GSI ANDPROPERTIES OF ALLELIC GENEALOGIES AT THE GSI LOCUS . . . . . . .
. . . . . . . . . . . . . . . . 206 4.3.3.2 THE ORIGIN OF SSI
...................... 207 4.3.3.3 EVOLUTION OF INBREEDING DEPRESSION
ANDITS IMPORTANCE FOR S-ALLELE INVASION ..... 207 4.3.3.4 TRANSITIONS
BETWEEN GSI ANDSSI ........... 207 XXIV * CONTENTS 4.3.3.5 CO-EXISTENCE
OF SI ANDSC ALLELES OR BREAKDOWN OF THE SYSTEM? ............. 208 4.3.4
THE ORIGIN OF HETEROMORPHIC INCOMPATIBILITY . 208 4.3.4.1 ARGUMENTS
AGAINST EVOLUTIONARY RELATIONSHIPS WITH HOMOMORPHIC SI
................... 209 4.3.4.1.1 HOMOMORPHIC SI SYSTEMS PROBABLY HAVE
MULTIPLE ORIGINS ....................... 209 4.3.4.1.2 HETEROMORPHIC
INCOMPATIBILITY IS SCATTEREDAMONG THE ANGIOSPERMS ANDHAS POLY-PHYLETIC
ORIGINS ............. 209 4.3.4.1.3 THERE ARE BASIC DIFFERENCES BETWEEN
HETEROMORPHIC ANDHOMOMORPHIC SI ....... 209 4.3.4.2 WHICH CAME FIRST,
HETEROMORPHY OR INCOMPATIBILITY? . . . . . . . . . . . . . . . . . . . .
. 210 4.3.4.3 EVOLUTION OF TRISTYLY .................... 211 4.3.4.4 THE
EVOLUTIONARY BREAKDOWN OR TRANSFORMATION OF HETEROMORPHY
....................... 211 4.3.5 SC AS THE *PARADOX OF EVOLUTION*
.......... 212 4.3.5.1 THE DERIVEDCONDITION OF SC ............. 212
4.3.5.1.1 MORE RECENT ARGUMENTS ................. 213 4.3.5.2 REASONS
FOR THE EXPANSION OF SELF-FERTILIZERS . . 213 4.3.5.2.1 OUTBREEDING IS
NOT ALWAYS ESSENTIAL ONCE THE ENVIRONMENT HAS BEEN CAPTURED. . . 214
4.3.5.2.2 INBREEDING-OUTBREEDING ALTERNATIONS PROVIDE FERTILITY
INSURANCE ...................... 214 4.3.5.2.3 SC FACILITATES THE
ESTABLISHMENT OF COLONIES AFTER THE LONG-DISTANCE DISPERSAL OF SINGLE
SEEDS ........................ 214 4.3.5.2.4 SELF-FERTILIZERS ARE
QUALIFIEDCOLONIZERS ..... 214 4.3.5.2.5 INBREDPOPULATIONS DISPLAY HIGH
LEVELS OF GENETIC DIVERSITY ..................... 215 4.3.6 THE ORIGIN
OF INTER-SPECIES INCOMPATIBILITY . . . 215 * 5 INCOMPATIBILITY AND
INCONGRUITY BARRIERS BETWEEN DIFFERENT SPECIES ............... 217 5.1
INTER-SPECIES INCOMPATIBILITY UNDER THE CONTROL OF THE S LOCUS
.......................... 217 5.1.1 THE SI * SC RULE . . . . . . . . .
. . . . . . . . . . . . . . 217 5.1.1.1 DISTRIBUTION OF THE BARRIER
............... 218 5.1.1.1.1 IN THE SOLANACEAE ......................
218 5.1.1.1.2 IN SPOROPHYTIC SYSTEMS .................. 218 5.1.1.1.3
THE SI * SC RULE IN THE GRASSES ............ 219 5.1.2 MANY EXCEPTIONS
TO THE SI * SC RULE . . . . . . . . 219 5.1.2.1 THEY OCCUR ESSENTIALLY
IN THE CASE OF SI * SI POLLINATION ............................ 219 XXV
CONTENTS * 5.1.2.2 SI * *SC* CROSSES ....................... 220 5.1.3
DIFFERENCES BETWEEN THE SI REACTION ANDINTER-SPECIES REJECTION PROCESSES
....... 221 5.1.3.1 SITUATION IN THE SOLANACEAE ............... 221
5.1.3.1.1 OBSERVATIONS WITH THE LIGHT MICROSCOPE ..... 221 5.1.3.1.2
ELECTRON MICROSCOPY .................... 222 5.1.3.2 IN THE BRASSICACEAE
..................... 222 5.1.4 THE INVOLVEMENT OF THE S LOCUS
........... 224 5.1.4.1 UNILATERAL PRE-ZYGOTIC ISOLATION IS AN ACTIVE
PROCESS IN BRASSICA ..................... 224 5.1.4.2 SF, A CLASS OF S
ALLELES THAT CLEARLY DISPLAY A DUAL FUNCTION ....................... 224
5.1.4.3 UNILATERAL PRE-ZYGOTIC ISOLATION REQUIRES THE ACTION OF
S-RIBONUCLEASES IN NICOTIANA ... 225 5.1.5 S-RECOGNITION STRUCTURES
PARTICIPATING IN INTER-SPECIES UI ..................... 227 5.1.5.1 THE
ANTIGEN-ANTIBODY MODEL ............. 228 5.1.5.1.1 SI * SI CROSSES . . .
. . . . . . . . . . . . . . . . . . . . . . 228 5.1.5.1.2 SI * SC
CROSSES ANDSC * SC CROSSES . . . . . . . . . 228 5.1.5.1.3 ACTUALITY OF
THE MODEL ................... 229 5.1.5.2 THE *AREA HYPOTHESIS*
.................. 229 5.1.5.3 THE S LOCUS AS A CLUSTER OF PRIMARY
ANDSECONDARY SPECIFICITIES ............... 230 5.1.5.4 WHY SI * SI
CROSSES OFTEN FAIL TO FOLLOW THE SI * SC RULE . . . . . . . . . . . . .
. . . . . . . . . . . 231 5.1.6 OTHER GENETIC LOCI ALSO PARTICIPATE IN
INTER-SPECIES INCOMPATIBILITY ............ 232 5.1.6.1 THE R LOCUS OF
SOLANUM ................. 232 5.1.6.2 A SWITCH GENE IN LYCOPERSICUM
............ 232 5.1.6.3 THE TWO-POWER COMPETITION HYPOTHESIS ..... 234
5.1.6.4 NON-FUNCTIONAL AND*CONDITIONALLY* FUNCTIONAL S ALLELES IN A SC
CULTIVAR OF PETUNIA ........ 234 5.1.6.5 AN INTERACTION BETWEEN THE S
LOCUS ANDMAJOR GENES IN LYCOPERSICUM PENNELLII ? . . 235 5.2 INCONGRUITY
BETWEEN THE POLLEN AND PISTIL ...... 236 5.2.1 WHAT IS INCONGRUITY?
.................... 236 5.2.1.1 WHEN DOES IT START?
.................... 236 5.2.1.2 WHEN DOES IT END? .....................
237 5.2.2 GENETIC BASIS OF INCONGRUITY .............. 238 5.2.3 ORIGIN
OF TISSUES ANDGENOMES INVOLVED IN INCONGRUITY . . . . . . . . . . . . .
. . . . . . . . . . . . 239 5.2.4 JUSTIFICATION OF THE HYPOTHESIS
............ 240 5.2.4.1 ARGUMENTS IN SUPPORT OF THE HYPOTHESIS .... 240
5.2.4.1.1 POLLEN*PISTIL BARRIERS BETWEEN SC SPECIES .... 241 XXVI *
CONTENTS 5.2.4.1.2 THE CONDITIONS THAT OVERCOME SI OFTEN HAVE NO EFFECT
ON INCONGRUITY . . . . . . . . . . . . 241 5.2.4.1.3 THE GENETICS OF
ACCEPTANCE ANDNON-ACCEPTANCE .................... 241 5.2.4.2 QUESTIONS
REMAIN ...................... 242 5.3 THE REMOVAL OF POLLEN*PISTIL
BARRIERS BETWEEN SPECIES ........................ 243 5.3.1
INTRA-SPECIES INBREEDING ................. 244 5.3.2 INDUCED MUTATIONS
..................... 245 5.3.3 EFFECTS OF MENTOR POLLEN
................. 246 5.3.3.1 CAN MENTOR EFFECTS ON SELF POLLEN
CONSOLIDATE REPRODUCTIVE BARRIERS BETWEEN SPECIES? ..... 246 5.3.3.2
NATURE OF THE MENTOR EFFECTS .............. 246 5.3.4 BUDPOLLINATION
ANDTHE ACTION OF PROTEIN INHIBITORS .................... 247 5.4
TRANSFER OF THE S GENE TO AUTOGAMOUS SPECIES
............................... 247 5.4.1 INTRODUCTION OF THE BRASSICA
SLG ANDSRK GENES IN SC SPECIES .................... 248 5.4.1.1 TRANSFER
OF SLG TO B. NAPUS ............... 248 5.4.1.2 TRANSFER OF SLG ANDSRK TO
A. THALIANA AND N. TABACUM ........................ 248 5.4.2 TRANSFER
ANDEXPRESSION OF THE S-RIBONUCLEASE GENE IN SC SPECIES ANDSC
INTER-SPECIES HYBRIDS OF NICOTIANA .................... 249 5.4.3 OTHER
GENES SHOULDBE TRANSFERRED WITH THE S GENE . . . . . . . . . . . . . . .
. . . . . . . . . 250 5.5 RECONSTRUCTION OF MULTIGENIC SI IN SC SPECIES
........................... 250 5.6 CROP IMPROVEMENT THROUGH THE
TRANSFER OF INDIVIDUAL GENES ...................... 251 * 6 CONCLUSIONS
........................... 253 6.1 HIGH-QUALITY RESEARCH AND ABUNDANCE
OF ACHIEVEMENTS ........................ 253 6.1.1 HIGH-QUALITY RESEARCH
.................. 253 6.1.2 AN ABUNDANCE OF ACHIEVEMENTS:
CLASSIFICATION, DISTRIBUTION ANDINHERITANCE OF SELF-INCOMPATIBLE SYSTEMS
.............. 253 XXVII CONTENTS * 6.1.3 FINE-STRUCTURE STUDIES OF
POLLEN AND POLLEN TUBES IN COMPATIBLE ANDINCOMPATIBLE SURROUNDINGS
......................... 254 6.1.4 IDENTIFICATION OF S GENES ACTIVE IN
THE PISTIL . . 254 6.1.5 DISCOVERY OF A PUTATIVE POLLEN DETERMINANT IN
THE CABBAGE FAMILY ................... 254 6.1.6 PROGRESS TOWARDS THE
UNDERSTANDING OF S SPECIFICITY ........................ 254 6.1.7
ADVANCES IN CELLULAR AND MOLECULAR SURGERY . . 255 6.1.8 NEW INFORMATION
REGARDING THE EVOLUTION OF SI SYSTEMS .......................... 255
6.1.9 BYPASSING PRE-ZYGOTIC INTER-SPECIES BARRIERS . . 256 6.2 THERE ARE
STILL NUMEROUS GAPS IN OUR KNOWLEDGE AND SKILL ................ 256
6.2.1 UNRAVELING THE S-GENE FAMILY ............. 256 6.2.1.1 GENETIC
CONTROL IS MORE COMPLEX THAN EXPECTED ........................ 256
6.2.1.2 THE S-GENE FAMILY OF BRASSICA IS SURPRISINGLY LARGE
.................... 257 6.2.1.3 S-LOCUS COMPLEXITY HAS ALSO BEEN FOUND
IN THE SOLANACEAE ....................... 257 6.2.1.4 THE S ALLELES OF
PAPAVER MAY ALSO BELONG TO A LARGE FAMILY ...................... 257
6.2.2 ANALYSIS OF RECOGNITION ANDREJECTION ...... 257 6.2.2.1
IDENTIFICATION ANDFUNCTION OF S ANDS-RELATED PROTEINS IN THE PISTIL
.................... 257 6.2.2.2 THE SEARCH FOR POLLEN DETERMINANTS
........ 258 6.2.2.3 IDENTIFICATION OF THE GENES AND PROCESSES
AFFECTEDBY THE REJECTION PHASE OF SI ....... 258 6.2.3 THE MOLECULAR
BIOLOGY OF SI IN HETEROMORPHIC SPECIES ................ 259 6.2.4
BARRIERS TO THE EXPRESSION OF TRANSFERREDGENES 259 6.2.5 EVOLUTION OF SI
........................ 260 6.2.5.1 THE MULTIPLE ORIGIN OF HOMOMORPHIC
SI .... 260 6.2.5.2 A RELATIONSHIP BETWEEN GSI AND SPOROPHYTIC SI? . . .
. . . . . . . . . . . . . . . . . 260 6.2.5.3 A MULTIPLE GENE SYSTEM AS
THE STARTING POINT FOR GSI . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 260 6.2.5.4 IS THE EMERGENCE OF NEW S ALLELES A GRADUAL
PROCESS? .............................. 261 6.2.5.5 NATURE OF THE
RELATIONSHIP (HOMOLOGY OR CONVERGENCE) BETWEEN THE S PROTEINS OF THE
DIFFERENT FAMILIES OF PLANTS THAT SHARE A COMMON SI SYSTEM
................... 261 6.2.5.6 EVOLUTION OF HETEROMORPHIC SI
............ 261 XXVIII * CONTENTS 6.2.6 INTER-SPECIES INCOMPATIBILITY
ANDINCONGRUITY . 262 6.2.6.1 THE COMPLEXITY OF POLLEN*PISTIL BARRIERS
BETWEEN SPECIES ....................... 262 6.2.6.2 THE NEEDFOR FURTHER
RESEARCH ON THE MOLECULAR BIOLOGY OF PRE-ZYGOTIC BARRIERS BETWEEN
SPECIES ....................... 262 6.2.6.3 SELECTION OF BRIDGING LINES
............... 263 * REFERENCES ................................. 265 *
SUBJECT INDEX ............................... 309 XXIX CONTENTS *
|
any_adam_object | 1 |
author | Nettancourt, Dreux de |
author_facet | Nettancourt, Dreux de |
author_role | aut |
author_sort | Nettancourt, Dreux de |
author_variant | d d n dd ddn |
building | Verbundindex |
bvnumber | BV013308604 |
classification_rvk | WN 7400 |
classification_tum | BIO 220f BIO 453f BIO 450f |
ctrlnum | (OCoLC)313837237 (DE-599)BVBBV013308604 |
dewey-full | 581.35 581.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 581 - Specific topics in natural history of plants |
dewey-raw | 581.35 581.3/5 |
dewey-search | 581.35 581.3/5 |
dewey-sort | 3581.35 |
dewey-tens | 580 - Plants |
discipline | Biologie |
edition | 2., totally rev. and enl. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01832nam a2200469 c 4500</leader><controlfield tag="001">BV013308604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000815s2001 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959215701</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540652175</subfield><subfield code="9">3-540-65217-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)313837237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013308604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">581.35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">581.3/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 7400</subfield><subfield code="0">(DE-625)151072:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 453f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nettancourt, Dreux de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incompatibility and incongruity in wild and cultivated plants</subfield><subfield code="b">with 19 tables</subfield><subfield code="c">Dreux de Nettancourt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., totally rev. and enl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 322 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 265 - 308. - 1. Aufl. u.d.T.: Nettancourt, Dreux de: Incompatibility in angiosperms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bedecktsamer</subfield><subfield code="0">(DE-588)4144254-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inkompatibilität</subfield><subfield code="0">(DE-588)4128495-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbststerilität</subfield><subfield code="0">(DE-588)4180851-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bedecktsamer</subfield><subfield code="0">(DE-588)4144254-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Selbststerilität</subfield><subfield code="0">(DE-588)4180851-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Inkompatibilität</subfield><subfield code="0">(DE-588)4128495-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009074244&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009074244</subfield></datafield></record></collection> |
id | DE-604.BV013308604 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:43:32Z |
institution | BVB |
isbn | 3540652175 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009074244 |
oclc_num | 313837237 |
open_access_boolean | |
owner | DE-703 DE-M49 DE-BY-TUM DE-29T DE-11 |
owner_facet | DE-703 DE-M49 DE-BY-TUM DE-29T DE-11 |
physical | XXIX, 322 S. Ill., graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
spelling | Nettancourt, Dreux de Verfasser aut Incompatibility and incongruity in wild and cultivated plants with 19 tables Dreux de Nettancourt 2., totally rev. and enl. ed. Berlin [u.a.] Springer 2001 XXIX, 322 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 265 - 308. - 1. Aufl. u.d.T.: Nettancourt, Dreux de: Incompatibility in angiosperms Bedecktsamer (DE-588)4144254-4 gnd rswk-swf Inkompatibilität (DE-588)4128495-1 gnd rswk-swf Selbststerilität (DE-588)4180851-4 gnd rswk-swf Bedecktsamer (DE-588)4144254-4 s Selbststerilität (DE-588)4180851-4 s Inkompatibilität (DE-588)4128495-1 s DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009074244&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nettancourt, Dreux de Incompatibility and incongruity in wild and cultivated plants with 19 tables Bedecktsamer (DE-588)4144254-4 gnd Inkompatibilität (DE-588)4128495-1 gnd Selbststerilität (DE-588)4180851-4 gnd |
subject_GND | (DE-588)4144254-4 (DE-588)4128495-1 (DE-588)4180851-4 |
title | Incompatibility and incongruity in wild and cultivated plants with 19 tables |
title_auth | Incompatibility and incongruity in wild and cultivated plants with 19 tables |
title_exact_search | Incompatibility and incongruity in wild and cultivated plants with 19 tables |
title_full | Incompatibility and incongruity in wild and cultivated plants with 19 tables Dreux de Nettancourt |
title_fullStr | Incompatibility and incongruity in wild and cultivated plants with 19 tables Dreux de Nettancourt |
title_full_unstemmed | Incompatibility and incongruity in wild and cultivated plants with 19 tables Dreux de Nettancourt |
title_short | Incompatibility and incongruity in wild and cultivated plants |
title_sort | incompatibility and incongruity in wild and cultivated plants with 19 tables |
title_sub | with 19 tables |
topic | Bedecktsamer (DE-588)4144254-4 gnd Inkompatibilität (DE-588)4128495-1 gnd Selbststerilität (DE-588)4180851-4 gnd |
topic_facet | Bedecktsamer Inkompatibilität Selbststerilität |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009074244&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nettancourtdreuxde incompatibilityandincongruityinwildandcultivatedplantswith19tables |