From quasicrystals to more complex systems: Les Houches School, February 23 - March 6, 1998
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer [u.a.]
2000
|
Schriftenreihe: | Centre de Physique <LesHouches>: Centre de Physique des Houches
13 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 374 S. Ill., graph. Darst. |
ISBN: | 3540674640 2868834825 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013270442 | ||
003 | DE-604 | ||
005 | 20221206 | ||
007 | t | ||
008 | 000718s2000 gw ad|| |||| 10||| ger d | ||
016 | 7 | |a 959286608 |2 DE-101 | |
020 | |a 3540674640 |9 3-540-67464-0 | ||
020 | |a 2868834825 |9 2-86883-482-5 | ||
035 | |a (OCoLC)45331351 | ||
035 | |a (DE-599)BVBBV013270442 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-703 |a DE-83 |a DE-11 | ||
050 | 0 | |a QC173.4.Q36 | |
082 | 0 | |a 530.4 | |
084 | |a UQ 8750 |0 (DE-625)146603: |2 rvk | ||
084 | |a PHY 620f |2 stub | ||
245 | 1 | 0 | |a From quasicrystals to more complex systems |b Les Houches School, February 23 - March 6, 1998 |c ed. F. Axel ... |
264 | 1 | |a Berlin [u.a.] |b Springer [u.a.] |c 2000 | |
300 | |a XX, 374 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centre de Physique <LesHouches>: Centre de Physique des Houches |v 13 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Quasicrystals |v Congresses | |
650 | 0 | 7 | |a Quasikristall |0 (DE-588)4202613-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aperiodischer Kristall |0 (DE-588)4492275-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1998 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Aperiodischer Kristall |0 (DE-588)4492275-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quasikristall |0 (DE-588)4202613-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Axel, Françoise |4 edt | |
710 | 2 | |a Centre de Physique (Les Houches) |e Sonstige |0 (DE-588)2057705-9 |4 oth | |
830 | 0 | |a Centre de Physique <LesHouches>: Centre de Physique des Houches |v 13 |w (DE-604)BV011876452 |9 13 | |
856 | 4 | 2 | |u http://digitale-objekte.hbz-nrw.de/storage/2006/07/07/file_64/1465770.pdf |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009047334&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009047334 |
Datensatz im Suchindex
_version_ | 1804128037130731520 |
---|---|
adam_text | CONTENTS COURSE 1 DYNAMICS AND TRANSPORT PROPERTIES OF APERIODIC
CRYSTALS BY T. JANSSEN 1. STRUCTURE AND SYMMETRY
.................................................................. 1 2.
PHONONS........................................................................................
5 3. DOMAIN WALL
MOTION.......................................................................
11 4. ELECTRONS
......................................................................................
13 5. TENSORIAL
PROPERTIES........................................................................
16 6. SURFACE EFFECTS
...............................................................................
17 7. TRANSPORT PROPERTIES
.......................................................................
19 8. CONCLUDING REMARKS
.......................................................................
20 COURSE 2 DIFFRACTION EXPERIMENTS ON QUASICRYSTALS AND RELATED PHASES
BY F. D´ ENOYER 1. INTRODUCTION
..................................................................................
23 2. DECAGONAL
QUASICRYSTALS..................................................................
24 2.1 GENERALITIES
...........................................................................
24 2.2 X-RAY STRUCTURE DETERMINATION OF DECAGONAL QUASICRYSTALS
............. 24 3. DECAGONAL SYMMETRY AND
TWINNING................................................... 30 3.1
TENFOLD TWINNING OF AL13FE4 AND AL13 FE4-TYPE STRUCTURE ..............
30 3.2 TWINNING IN THE STRUCTURE OF DECAGONAL PHASES AND FINE STRUCTURE
OF DIFFRACTION PEAKS
................................................................. 32 3.3
TWINNING AND MAIN CHARACTERISTIC FEATURES OF DIFFRACTION PATTERNS .. 32
3.4 DESCRIPTION OF MICROSTRUCTURES IN TERMS OF PHASON-STRAIN
QUASICRYSTALS ...................................... 35 XIV 4.
QUASICRYSTAL TRANSFORMATIONS
........................................................... 41 5.
ICOSAHEDRAL SHORT RANGE ORDER IN
GLASSES............................................. 42 6.
CONCLUSION....................................................................................
45 COURSE 3 ELECTRONIC PROPERTIES OF QUASICRYSTALS. A COMPARISON WITH
APPROXIMANT PHASES AND DISORDERED SYSTEMS GIVEN BY C. BERGER WRITTEN BY
C. BERGER AND T. GRENET 1. INTRODUCTION
..................................................................................
49 1.1 QUASIPERIODIC ORDER
................................................................ 50 1.2
QUASICRYSTALS, CRYSTALS AND AMORPHOUS
PHASES............................. 52 1.3 SAMPLES OF HIGH STRUCTURAL
QUALITY IN TERNARY ALLOYS ..................... 53 1.4 UNEXPECTED
PHYSICAL PROPERTIES ................................................ 54
2. CONDUCTIVITY AND DENSITY OF STATES IN
QUASICRYSTALS.............................. 54 2.1 LOW ELECTRICAL
CONDUCTIVITY VALUES IN I -PHASES ............................ 54 2.2 LOW
ELECTRONIC DENSITY OF STATES IN QUASICRYSTALS .........................
57 3. COMPARISON WITH OTHER METALLIC ALLOYS
.............................................. 59 3.1 SCALE OF
CONDUCTIVITY IN METALLIC ALLOYS...................................... 59
3.2 EFFECT OF DIFFRACTION
................................................................ 60 3.3
QUANTUM INTERFERENCE EFFECTS IN DISORDERED SYSTEMS ....................
61 3.4 DISORDERED INSULATOR AND ANDERSON LOCALIZATION
.......................... 65 4. PERIODICITY AS AN APPROACH TO
QUASIPERIODICITY.................................... 65 4.1 APPROXIMANT
PHASES ...............................................................
66 4.2 EXPERIMENTAL ELECTRICAL CONDUCTIVITY IN APPROXIMANT PHASES
......... 66 4.3 CALCULATED ELECTRONIC PROPERTIES IN APPROXIMANTS
........................ 68 4.4 LOW DIMENSIONAL PERFECT QUASIPERIODIC
MODELS........................... 69 5. QUASICRYSTALS AS ORDERED
STRUCTURES OF HIGH SYMMETRY ......................... 72 5.1 PSEUDO
BRILLOUIN ZONE
............................................................. 72 5.2
ROLE OF LOCAL ATOMIC CLUSTERS
.................................................... 74 6. TOWARDS A
METAL-INSULATOR TRANSITION IN QUASICRYSTALS: COMPARISON WITH DISORDERED
SYSTEMS ................................................ 75 CONTENTS XV
6.1 SOME EXPERIMENTAL EVIDENCE FOR THE APPROACH TO A METAL-INSULATOR
TRANSITION IN QUASICRYSTALS............................. 76 6.2 CROSSING
OF THE METAL-INSULATOR TRANSITION IN I -ALPDRE ................. 77 7.
CONCLUSION....................................................................................
79 COURSE 4 EXACT ELECTRON STATES IN 1 D (QUASI-) PERIODIC ARRAYS OF
DELTA-POTENTIALS GIVEN BY P. KRAMER WRITTEN BY P. KRAMER AND T. KRAMER
1. INTRODUCTION AND
SCOPE....................................................................
85 2. FINITE PERIODIC STRINGS AT NEGATIVE ENERGY
........................................... 89 2.1 PREVIEW: AN ENERGY
GAUGE FOR CRYSTALS ...................................... 89 2.2 BLOCH
AND BOUND STATES IN A SINGLE BAND.....................................
90 2.3 THE STRING S N
.........................................................................
95 2.4 RATIONAL BLOCH LABELS
.............................................................. 96 2.5
BOUND STATES AND CLUSTERS OF THE STRING S N
................................... 96 2.6 PARTICIPATION
NUMBER............................................................... 98
2.7 SUPERCELL INTERPRETATION
........................................................... 99 2.8 LARGE
N
LIMIT.........................................................................
. 99 3. FINITE QUASIPERIODIC STRINGS AT NEGATIVE
ENERGY.................................... 100 3.1 PREVIEW: ENERGY GAUGE
IN FIBONACCI STRINGS ............................... 100 3.2
SUBSTITUTIONAL SYSTEMS AND THEIR INVARIANTS
................................. 101 3.3 RECURSIVE CALCULATION OF THE
TRANSFER MATRIX................................ 102 4. PERIODIC STRINGS
AT POSITIVE ENERGY ....................................................
106 4.1 THE S
-MATRIX..........................................................................
107 4.2 THE S -MATRIX FOR THE PERIODIC STRING S N
...................................... 108 5. QUASIPERIODIC STRINGS AT
POSITIVE ENERGY ............................................ 110 5.1 THE
FIBONACCI-ATLAS
................................................................ 110 6
CONCLUSION....................................................................................
112 XVI COURSE 5 RANDOM TILING MODELS FOR QUASICRYSTALS BY E. COCKAYNE
1. INTRODUCTION
..................................................................................
115 1.1 BASIC
DEFINITIONS.....................................................................
116 1.2 GENERATION OF QUASICRYSTALLINE TILINGS
........................................ 117 1.3 RANDOMIZATION OF
TILINGS ......................................................... 120
1.4 A ZOO OF TILING
MODELS............................................................. 121
2. MATHEMATICS OF RANDOM
TILINGS......................................................... 123 2.1
ENTROPY DENSITY AND PHASON ELASTIC
CONSTANTS.............................. 123 2.2 LONG-WAVELENGTH BEHAVIOR
AND STABILITY..................................... 126 2.3
DIFFRACTION.............................................................................
127 3. RANDOM TILING
RESULTS......................................................................
128 3.1 MONTE CARLO
SIMULATION...........................................................
128 3.2
COMBINATORICS........................................................................
129 3.3 TRANSFER MATRIX METHOD
........................................................... 130 3.4
BETHE ANSATZ METHOD
.............................................................. 132 4.
ATOMIC MODELS FOR QUASICRYSTALS
...................................................... 132 4.1
HREM/DIFFRACTION-BASED
......................................................... 133 4.2 MODELS
BASED ON REALISTIC INTERATOMIC FORCES .............................. 136
4.3 OTHER MODELS
.........................................................................
138 5. QUASICRYSTAL PHASE
TRANSFORMATIONS................................................... 139
5.1 PHASON UNLOCKING
................................................................... 139
5.2 QUASICRYSTAL *
(MICRO)CRYSTAL.................................................. 139 6.
CONCLUSIONS
..................................................................................
140 COURSE 6 MODEL SETS: A SURVEY BY R.V. MOODY 1. INTRODUCTION
..................................................................................
145 2. MODEL SETS
....................................................................................
147 3. GEOMETRIC SIDE
..............................................................................
149 4. ARITHMETIC SIDE
..............................................................................
150 CONTENTS XVII 4.1 THE ICOSIAN MODEL SETS
............................................................ 150 4.2 P
-ADIC MODEL SETS
................................................................... 152
5. ANALYTIC SIDE
.................................................................................
155 6. DYNAMICAL SYSTEMS SIDE
.................................................................. 157
7. DIFFRACTION
....................................................................................
160 7.1 COMMENTS
.............................................................................
163 COURSE 7 ACCEPTANCE WINDOWS COMPATIBLE WITH A QUASICRYSTAL FRAGMENT
GIVEN BY J. PATERA WRITTEN BY Z. MAS´ AKOV´ A, J. PATERA AND E.
PELANTOV´ A 1. INTRODUCTION
..................................................................................
167 2. NOTATION AND AUXILIARY
FACTS............................................................. 171
3. LOCAL INVARIANCE AND THE FORWARD GROWTH
........................................... 174 4. THE MAXIMAL
ACCEPTANCE WINDOW .....................................................
178 5. EXAMPLE: ANALYSIS OF TWO-DIMENSIONAL QUASICRYSTAL
DATA..................... 180 6. COMMENTS AND REMARKS
.................................................................. 189
COURSE 8 COUNTING SYSTEMS WITH IRRATIONAL BASIS FOR QUASICRYSTALS GIVEN
BY J.P. GAZEAU WRITTEN BY J.P. GAZEAU AND R. KREJCAR 1. INTRODUCTION
..................................................................................
195 2. THE SET OF * -INTEGERS
.......................................................................
197 3. TAU-INTEGER LABELLING OF THE FIBONACCI
CHAIN....................................... 199 4. TAU-INTEGER
LABELLING OF DIFFRACTION
PATTERN......................................... 202 5. TAU-INTEGER
LABELLING OF TWO-DIMENSIONAL STRUCTURES ............................ 205
6. ARITHMETICS AND ALGEBRA OF THE * -INTEGERS
.......................................... 211 XVIII COURSE 9
ACOUSTIC-LIKE EXCITATIONS IN STRONGLY DISORDERED MEDIA GIVEN BY E.
COURTENS WRITTEN BY E. COURTENS AND R. VACHER 1. INTRODUCTION
..................................................................................
219 2. THE CASE OF MASS-FRACTAL MEDIA
........................................................ 221 2.1 THE
STRUCTURE OF MASS FRACTALS
................................................... 222 2.2 THE CONCEPT
OF MUTUALLY SELF-SIMILAR SERIES OF MSSS ................... 226 2.3 THE
DYNAMICS OF MASS
FRACTALS.................................................. 227 3. THE
CASE OF
GLASSES.........................................................................
234 3.1 WHAT IS ALREADY ESTABLISHED
...................................................... 236 3.2
SPECTROSCOPY OF ACOUSTIC EXCITATIONS IN THE TERAHERTZ REGIME * THREE
REMARKS ...................................... 240 3.3 SOME STUDIES NEAR
THE END OF ACOUSTIC BRANCHES IN GLASSES ............ 243 4. CONCLUSIONS
..................................................................................
249 COURSE 10 INTERMITTENT DYNAMICS AND AGEING IN GLASSY SYSTEMS BY
J.-PH. BOUCHAUD 1. INTRODUCTION
..................................................................................
261 2. A SIMPLE MODEL: TRAPS AND INTERMITTENT DYNAMICS
.............................. 263 3. RELATION WITH MODE-COUPLING
DESCRIPTIONS ......................................... 265 4.
SELF-INDUCED QUENCHED DISORDER AND OPEN
QUESTIONS............................ 267 COURSE 11 A SHORT INTRODUCTION
TO ERGODIC THEORY AND ITS APPLICATIONS BY F.M. DEKKING 1. DYNAMICAL
SYSTEMS
........................................................................
273 1.1 EXAMPLES
..............................................................................
273 1.2 RECURRENCE
............................................................................
277 1.3 ERGODIC
THEOREM.....................................................................
278 CONTENTS XIX 1.4 UNIQUE ERGODICITY
................................................................... 280
1.5 EXPECTED RECURRENCE TIME
........................................................ 281 2. SPECTRAL
PROPERTIES OF DYNAMICAL SYSTEMS
.......................................... 282 2.1 THE SPECTRUM OF A
DYNAMICAL SYSTEM ......................................... 282 2.2
MIXING..................................................................................
283 3. ENTROPY OF DYNAMICAL SYSTEMS
......................................................... 284 3.1
ISOMORPHISM..........................................................................
286 3.2 ENTROPY AND HAUSDORFF
DIMENSION............................................. 287 4. EPILOGUE
.......................................................................................
288 COURSE 12 FRACTALITY AND THE KINETICS OF CHAOS BY G.M. ZASLAVSKY 1.
INTRODUCTION
..................................................................................
291 2. MAPPING THE
DYNAMICS....................................................................
295 3. TOPOLOGICAL ZOO (SINGULAR ZONES)
...................................................... 297 4.
SELF-SIMILAR HIERARCHY OF
ISLANDS....................................................... 300 5.
QUASI-TRAPS
...................................................................................
301 6. BOUNDARY LAYER AS A QUASI-TRAP
......................................................... 303 7. FRACTAL
AND MULTIFRACTAL SPACE-TIME OF KINETICS
................................... 304 8. DIMENSION SPECTRUM OF THE
MULTIFRACTAL SPACE-TIME............................. 307 9. FRACTIONAL
KINETICS..........................................................................
309 10. CONCLUSIONS
..................................................................................
312 COURSE 13 LONG-TAILED DISTRIBUTIONS IN PHYSICS GIVEN BY M.F.
SHLESINGER WRITTEN BY M.F. SHLESINGER, J. KLAFTER AND G. ZUMOFEN 1.
INTRODUCTION
..................................................................................
315 2. FRACTAL
TIME...................................................................................
319 3. SLOW RELAXATIONS
............................................................................
321 4. FRACTAL SPACE PROCESSES
................................................................... 321
5. NONLINEAR DYNAMICS
.......................................................................
324 XX COURSE 14 DISTRIBUTION OF GALAXIES: SCALING VS. FRACTALITY BY R.
BALIAN 1. INTRODUCTION
..................................................................................
329 2. ALGEBRA OF POINT DISTRIBUTIONS
.......................................................... 330 2.1
DENSITIES AND CORRELATIONS
........................................................ 330 2.2 COUNTS
IN CELLS
.......................................................................
332 3. SCALE INVARIANCE
.............................................................................
333 3.1 SCALING OF CORRELATIONS
............................................................ 333 3.2 THE
VOID PROBABILITY
............................................................... 333 3.3
SCALING OF COUNTS IN CELLS
......................................................... 334 4.
FRACTALITY
......................................................................................
336 4.1 CORRELATION
DIMENSION.............................................................
336 4.2 HAUSDORFF DIMENSION FOR OCCUPIED CELLS
..................................... 337 4.3 RENYI INDEX
...........................................................................
338 4.4 MULTIFRACTAL DIMENSION
............................................................ 340 5.
CONCLUSION....................................................................................
343
|
any_adam_object | 1 |
author2 | Axel, Françoise |
author2_role | edt |
author2_variant | f a fa |
author_facet | Axel, Françoise |
building | Verbundindex |
bvnumber | BV013270442 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.4.Q36 |
callnumber-search | QC173.4.Q36 |
callnumber-sort | QC 3173.4 Q36 |
callnumber-subject | QC - Physics |
classification_rvk | UQ 8750 |
classification_tum | PHY 620f |
ctrlnum | (OCoLC)45331351 (DE-599)BVBBV013270442 |
dewey-full | 530.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4 |
dewey-search | 530.4 |
dewey-sort | 3530.4 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02100nam a2200505 cb4500</leader><controlfield tag="001">BV013270442</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000718s2000 gw ad|| |||| 10||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959286608</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540674640</subfield><subfield code="9">3-540-67464-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2868834825</subfield><subfield code="9">2-86883-482-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45331351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013270442</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.4.Q36</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8750</subfield><subfield code="0">(DE-625)146603:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From quasicrystals to more complex systems</subfield><subfield code="b">Les Houches School, February 23 - March 6, 1998</subfield><subfield code="c">ed. F. Axel ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer [u.a.]</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 374 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centre de Physique <LesHouches>: Centre de Physique des Houches</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasicrystals</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aperiodischer Kristall</subfield><subfield code="0">(DE-588)4492275-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1998</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aperiodischer Kristall</subfield><subfield code="0">(DE-588)4492275-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Axel, Françoise</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Centre de Physique (Les Houches)</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)2057705-9</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Centre de Physique <LesHouches>: Centre de Physique des Houches</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV011876452</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://digitale-objekte.hbz-nrw.de/storage/2006/07/07/file_64/1465770.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009047334&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009047334</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1998 Les Houches gnd-content |
genre_facet | Konferenzschrift 1998 Les Houches |
id | DE-604.BV013270442 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:42:52Z |
institution | BVB |
institution_GND | (DE-588)2057705-9 |
isbn | 3540674640 2868834825 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009047334 |
oclc_num | 45331351 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-83 DE-11 |
physical | XX, 374 S. Ill., graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer [u.a.] |
record_format | marc |
series | Centre de Physique <LesHouches>: Centre de Physique des Houches |
series2 | Centre de Physique <LesHouches>: Centre de Physique des Houches |
spelling | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 ed. F. Axel ... Berlin [u.a.] Springer [u.a.] 2000 XX, 374 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Centre de Physique <LesHouches>: Centre de Physique des Houches 13 Literaturangaben Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd rswk-swf Aperiodischer Kristall (DE-588)4492275-9 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1998 Les Houches gnd-content Aperiodischer Kristall (DE-588)4492275-9 s DE-604 Quasikristall (DE-588)4202613-1 s Axel, Françoise edt Centre de Physique (Les Houches) Sonstige (DE-588)2057705-9 oth Centre de Physique <LesHouches>: Centre de Physique des Houches 13 (DE-604)BV011876452 13 http://digitale-objekte.hbz-nrw.de/storage/2006/07/07/file_64/1465770.pdf Inhaltsverzeichnis SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009047334&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 Centre de Physique <LesHouches>: Centre de Physique des Houches Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd Aperiodischer Kristall (DE-588)4492275-9 gnd |
subject_GND | (DE-588)4202613-1 (DE-588)4492275-9 (DE-588)1071861417 |
title | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 |
title_auth | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 |
title_exact_search | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 |
title_full | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 ed. F. Axel ... |
title_fullStr | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 ed. F. Axel ... |
title_full_unstemmed | From quasicrystals to more complex systems Les Houches School, February 23 - March 6, 1998 ed. F. Axel ... |
title_short | From quasicrystals to more complex systems |
title_sort | from quasicrystals to more complex systems les houches school february 23 march 6 1998 |
title_sub | Les Houches School, February 23 - March 6, 1998 |
topic | Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd Aperiodischer Kristall (DE-588)4492275-9 gnd |
topic_facet | Quasicrystals Congresses Quasikristall Aperiodischer Kristall Konferenzschrift 1998 Les Houches |
url | http://digitale-objekte.hbz-nrw.de/storage/2006/07/07/file_64/1465770.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009047334&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011876452 |
work_keys_str_mv | AT axelfrancoise fromquasicrystalstomorecomplexsystemsleshouchesschoolfebruary23march61998 AT centredephysiqueleshouches fromquasicrystalstomorecomplexsystemsleshouchesschoolfebruary23march61998 |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis