Stochastic population models: a compartmental perspective
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2000
|
Schriftenreihe: | Lecture notes in statistics
145 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 202 S. graph. Darst., Kt. |
ISBN: | 038798657X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013268429 | ||
003 | DE-604 | ||
005 | 20091126 | ||
007 | t | ||
008 | 000726s2000 xxubd|| |||| 00||| eng d | ||
016 | 7 | |a 959571604 |2 DE-101 | |
020 | |a 038798657X |9 0-387-98657-X | ||
035 | |a (OCoLC)43936735 | ||
035 | |a (DE-599)BVBBV013268429 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-824 |a DE-739 |a DE-19 |a DE-355 |a DE-706 |a DE-634 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA276.A1 | |
050 | 0 | |a QH352 | |
082 | 0 | |a 577.8/8/015118 |2 21 | |
084 | |a SI 856 |0 (DE-625)143202: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a WG 8200 |0 (DE-625)148620: |2 rvk | ||
084 | |a WI 2100 |0 (DE-625)148763: |2 rvk | ||
100 | 1 | |a Matis, James H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic population models |b a compartmental perspective |c James H. Matis ; Thomas R. Kiffe |
264 | 1 | |a New York [u.a.] |b Springer |c 2000 | |
300 | |a X, 202 S. |b graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in statistics |v 145 | |
650 | 4 | |a Biologie des populations - Modèles mathématiques | |
650 | 7 | |a Biologie des populations - Modèles mathématiques |2 ram | |
650 | 7 | |a Populaties (biologie) |2 gtt | |
650 | 4 | |a Processus stochastiques - Modèles mathématiques | |
650 | 7 | |a Processus stochastiques - Modèles mathématiques |2 ram | |
650 | 7 | |a Stochastische processen |2 gtt | |
650 | 7 | |a Wiskundige modellen |2 gtt | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Population biology |x Mathematical models | |
650 | 4 | |a Stochastic processes |x Mathematical models | |
650 | 0 | 7 | |a Populationsdynamik |0 (DE-588)4046803-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Populationsdynamik |0 (DE-588)4046803-3 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kiffe, Thomas R. |e Verfasser |4 aut | |
830 | 0 | |a Lecture notes in statistics |v 145 |w (DE-604)BV002447846 |9 145 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009046012&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805068496050061312 |
---|---|
adam_text |
TABLE
OF
CONTENTS
PART
I
INTRODUCTION
1.
OVERVIEW
OF
MODELS
.
2
1.1
MODELING
OBJECTIVES
.
2
1.2
STRUCTURE
OF
MONOGRAPH
.
3
2.
SOME
APPLICATIONS
.
5
2.1
INTRODUCTION
.
5
2.2
APPLICATION
TO
INVASION
OF
AFRICANIZED
HONEY
BEE
.
5
2.3
APPLICATION
TO
MUSKRAT
SPREAD
IN
THE
NETHERLANDS
.
7
2.4
APPLICATION
TO
BIOACCUMULATION
OF
MERCURY
IN
FISH
.
9
2.5
APPLICATION
TO
HUMAN
CALCIUM
KINETICS
.
13
PART
II
MODELS
FOR
A
SINGLE
POPULATION
3.
BASIC
METHODOLOGY
FOR
SINGLE
POPULATION
STOCHASTIC
MODELS
.
17
3.1
INTRODUCTION
.
17
3.2
BASIC
ASSUMPTIONS
.
17
3.3
MOMENTS
AND
CUMULANTS
.
19
3.4
KOLMOGOROV
DIFFERENTIAL
EQUATIONS
.
21
3.5
GENERATING
FUNCTIONS
.
23
3.6
PARTIAL
DIFFERENTIAL
EQUATIONS
FOR
GENERATING
FUNCTIONS
.
25
3.7
GENERAL
APPROACH
TO
SINGLE
POPULATION
GROWTH
MODELS
.
28
4.
LINEAR
IMMIGRATION-DEATH
MODELS
.
30
4.1
INTRODUCTION
.
30
4.2
DETERMINISTIC
MODEL
.
30
4.3
PROBABILITY
DISTRIBUTIONS
FOR
THE
STOCHASTIC
MODEL
.
32
4.4
GENERATING
FUNCTIONS
.
33
4.5
CUMULANT
FUNCTIONS
.
35
4.6
SOME
PROPERTIES
OF
THE
STOCHASTIC
SOLUTION
.
36
TABLE
OF
CONTENTS
IX
4.7
ILLUSTRATIONS
.
37
5.
LINEAR
BIRTH-IMMIGRATION-DEATH
MODELS
.
40
5.1
INTRODUCTION
.
40
5.2
DETERMINISTIC
MODEL
.
40
5.3
PROBABILITY
DISTRIBUTION
FOR
THE
STOCHASTIC
MODEL
.
41
5.4
GENERATING
FUNCTIONS
.
42
5.5
CUMULANT
FUNCTIONS
.
43
5.6
SOME
PROPERTIES
OF
THE
STOCHASTIC
SOLUTION
.
45
5.7
ILLUSTRATIONS
.
45
6.
NONLINEAR
BIRTH-DEATH
MODELS
.
49
6.1
INTRODUCTION
.
49
6.2
DETERMINISTIC
MODEL
.
50
6.3
PROBABILITY
DISTRIBUTIONS
FOR
THE
STOCHASTIC
MODEL
.
51
6.4
GENERATING
FUNCTIONS
.
53
6.5
CUMULANT
FUNCTIONS
.
54
6.6
SOME
PROPERTIES
OF
THE
STOCHASTIC
SOLUTION
.
55
6.7
ILLUSTRATIONS
.
55
6.8
APPENDICES
.
67
PART
III
MODELS
FOR
MULTIPLE
POPULATIONS
7.
NONLINEAR
BIRTH-IMMIGRATION-DEATH
MODELS
.
72
7.1
INTRODUCTION
.
72
7.2
DETERMINISTIC
MODEL
.
73
7.3
PROBABILITY
DISTRIBUTION
FOR
THE
STOCHASTIC
MODEL
.
77
7.4
GENERATING
FUNCTIONS
.
78
7.5
CUMULANT
FUNCTIONS
.
79
7.6
SOME
PROPERTIES
OF
THE
STOCHASTIC
SOLUTION
.
80
7.7
ILLUSTRATIONS
.
80
7.8
APPENDICES
.
87
8.
STANDARD
MULTIPLE
COMPARTMENT
ANALYSIS
.
101
8.1
INTRODUCTION
.
101
8.2
DETERMINISTIC
MODEL
FORMULATION
AND
SOLUTION
.
101
8.3
ILLUSTRATIONS
.
105
X
TABLE
OF
CONTENTS
9.
BASIC
METHODOLOGY
FOR
MULTIPLE
POPULATION
STOCHASTIC
MODELS
.
110
9.1
INTRODUCTION
.
110
9.2
BASIC
ASSUMPTIONS
.
110
9.3
JOINT
MOMENTS
AND
CUMULANTS
.
112
9.4
KOLMOGOROV
DIFFERENTIAL
EQUATIONS
.
114
9.5
BIVARIATE
GENERATING
FUNCTIONS
.
115
9.6
PARTIAL
DIFFERENTIAL
EQUATIONS
FOR
GENERATING
FUNCTIONS
.
116
9.7
GENERAL
APPROACH
TO
MULTIPLE
POPULATION
GROWTH
MODELS
.
118
10.
LINEAR
DEATH-MIGRATION
MODELS
.
119
10.1
INTRODUCTION
.
119
10.2
GENERAL
FORMULATION
OF
THE
STOCHASTIC
MODEL
.
119
10.3
DIRECT
SOLUTION
FOR
STOCHASTIC
MIGRATION-DEATH
MODEL
.
121
10.4
MEAN
RESIDENCE
TIMES
.
126
10.5
APPENDIX
.
129
11.
LINEAR
IMMIGRATION-DEATH-MIGRATION
MODELS
.
137
11.1
INTRODUCTION
.
137
11.2
GENERATING
FUNCTIONS
FOR
THE
STOCHASTIC
MODEL
.
137
11.3
PROBABILITY
DISTRIBUTION
.
138
11.4
CUMULANT
FUNCTIONS
.
140
12.
LINEAR
BIRTH-IMMIGRATION-DEATH-MIGRATION
MODELS
.
142
12.1
INTRODUCTION
.
142
12.2
EQUATIONS
FOR
CUMULANT
FUNCTIONS
.
143
12.3
APPLICATION
TO
DISPERSAL
OF
AFRICAN
BEES-BASIC
MODEL
.
144
12.4
APPLICATION
TO
MUSKRAT
SPREAD
DATA
.
149
12.5
APPENDIX
.
151
13.
NONLINEAR
BIRTH-DEATH-MIGRATION
MODELS
.
161
13.1
INTRODUCTION
.
161
13.2
PROBABILITY
DISTRIBUTION
FOR
THE
STOCHASTIC
MODEL
.
162
13.3
CUMULANT
FUNCTIONS
.
167
14.
NONLINEAR
HOST-PARASITE
MODELS
.
172
14.1
INTRODUCTION
.
172
14.2
PROPOSED
HOST-PARASITE
MODEL
.
173
14.3
CONCLUSIONS
AND
FUTURE
RESEARCH
DIRECTIONS
.
183
14.4
APPENDIX
.
188
REFERENCES
.
189
INDEX
.
199 |
any_adam_object | 1 |
author | Matis, James H. Kiffe, Thomas R. |
author_facet | Matis, James H. Kiffe, Thomas R. |
author_role | aut aut |
author_sort | Matis, James H. |
author_variant | j h m jh jhm t r k tr trk |
building | Verbundindex |
bvnumber | BV013268429 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.A1 QH352 |
callnumber-search | QA276.A1 QH352 |
callnumber-sort | QA 3276 A1 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 856 SK 820 WG 8200 WI 2100 |
ctrlnum | (OCoLC)43936735 (DE-599)BVBBV013268429 |
dewey-full | 577.8/8/015118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577.8/8/015118 |
dewey-search | 577.8/8/015118 |
dewey-sort | 3577.8 18 515118 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV013268429</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091126</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000726s2000 xxubd|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959571604</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038798657X</subfield><subfield code="9">0-387-98657-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43936735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013268429</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.A1</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH352</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577.8/8/015118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 856</subfield><subfield code="0">(DE-625)143202:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 8200</subfield><subfield code="0">(DE-625)148620:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 2100</subfield><subfield code="0">(DE-625)148763:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matis, James H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic population models</subfield><subfield code="b">a compartmental perspective</subfield><subfield code="c">James H. Matis ; Thomas R. Kiffe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 202 S.</subfield><subfield code="b">graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in statistics</subfield><subfield code="v">145</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biologie des populations - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biologie des populations - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Populaties (biologie)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus stochastiques - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processus stochastiques - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische processen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population biology</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsdynamik</subfield><subfield code="0">(DE-588)4046803-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Populationsdynamik</subfield><subfield code="0">(DE-588)4046803-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiffe, Thomas R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in statistics</subfield><subfield code="v">145</subfield><subfield code="w">(DE-604)BV002447846</subfield><subfield code="9">145</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009046012&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV013268429 |
illustrated | Illustrated |
indexdate | 2024-07-20T03:51:01Z |
institution | BVB |
isbn | 038798657X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009046012 |
oclc_num | 43936735 |
open_access_boolean | |
owner | DE-824 DE-739 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-706 DE-634 DE-83 DE-11 |
owner_facet | DE-824 DE-739 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-706 DE-634 DE-83 DE-11 |
physical | X, 202 S. graph. Darst., Kt. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Lecture notes in statistics |
series2 | Lecture notes in statistics |
spelling | Matis, James H. Verfasser aut Stochastic population models a compartmental perspective James H. Matis ; Thomas R. Kiffe New York [u.a.] Springer 2000 X, 202 S. graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Lecture notes in statistics 145 Biologie des populations - Modèles mathématiques Biologie des populations - Modèles mathématiques ram Populaties (biologie) gtt Processus stochastiques - Modèles mathématiques Processus stochastiques - Modèles mathématiques ram Stochastische processen gtt Wiskundige modellen gtt Mathematisches Modell Population biology Mathematical models Stochastic processes Mathematical models Populationsdynamik (DE-588)4046803-3 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Populationsdynamik (DE-588)4046803-3 s Stochastischer Prozess (DE-588)4057630-9 s DE-604 Kiffe, Thomas R. Verfasser aut Lecture notes in statistics 145 (DE-604)BV002447846 145 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009046012&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Matis, James H. Kiffe, Thomas R. Stochastic population models a compartmental perspective Lecture notes in statistics Biologie des populations - Modèles mathématiques Biologie des populations - Modèles mathématiques ram Populaties (biologie) gtt Processus stochastiques - Modèles mathématiques Processus stochastiques - Modèles mathématiques ram Stochastische processen gtt Wiskundige modellen gtt Mathematisches Modell Population biology Mathematical models Stochastic processes Mathematical models Populationsdynamik (DE-588)4046803-3 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4046803-3 (DE-588)4057630-9 |
title | Stochastic population models a compartmental perspective |
title_auth | Stochastic population models a compartmental perspective |
title_exact_search | Stochastic population models a compartmental perspective |
title_full | Stochastic population models a compartmental perspective James H. Matis ; Thomas R. Kiffe |
title_fullStr | Stochastic population models a compartmental perspective James H. Matis ; Thomas R. Kiffe |
title_full_unstemmed | Stochastic population models a compartmental perspective James H. Matis ; Thomas R. Kiffe |
title_short | Stochastic population models |
title_sort | stochastic population models a compartmental perspective |
title_sub | a compartmental perspective |
topic | Biologie des populations - Modèles mathématiques Biologie des populations - Modèles mathématiques ram Populaties (biologie) gtt Processus stochastiques - Modèles mathématiques Processus stochastiques - Modèles mathématiques ram Stochastische processen gtt Wiskundige modellen gtt Mathematisches Modell Population biology Mathematical models Stochastic processes Mathematical models Populationsdynamik (DE-588)4046803-3 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Biologie des populations - Modèles mathématiques Populaties (biologie) Processus stochastiques - Modèles mathématiques Stochastische processen Wiskundige modellen Mathematisches Modell Population biology Mathematical models Stochastic processes Mathematical models Populationsdynamik Stochastischer Prozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009046012&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002447846 |
work_keys_str_mv | AT matisjamesh stochasticpopulationmodelsacompartmentalperspective AT kiffethomasr stochasticpopulationmodelsacompartmentalperspective |